import redhat-rpm-config-285-1.el10

c10-beta imports/c10-beta/redhat-rpm-config-285-1.el10
MSVSphere Packaging Team 2 months ago
commit c741012df0
Signed by: sys_gitsync
GPG Key ID: B2B0B9F29E528FE8

@ -0,0 +1,13 @@
#!/bin/sh -efu
# Force creating of DSO symlinks.
# If using normal root, avoid changing anything.
if [ -z "$RPM_BUILD_ROOT" -o "$RPM_BUILD_ROOT" = "/" ]; then
exit 0
fi
# Create an empty config file for ldconfig to shut up a warning
config=$(mktemp -p "$RPM_BUILD_ROOT")
/sbin/ldconfig -f $(basename "$config") -N -r "$RPM_BUILD_ROOT"
rm -f "$config"
# TODO: warn if it created new symlinks and guide people.

@ -0,0 +1,54 @@
#!/usr/bin/bash -eu
if [ -z "$RPM_BUILD_ROOT" ] || [ "$RPM_BUILD_ROOT" = "/" ]; then
exit 0
fi
CLANG_FLAGS=$@
NCPUS=${RPM_BUILD_NCPUS:-1}
check_convert_bitcode () {
local file_name=$(realpath ${1})
local file_type=$(file ${file_name})
shift
CLANG_FLAGS="$@"
if [[ "${file_type}" == *"LLVM IR bitcode"* ]]; then
# Check the output of llvm-strings for the command line, which is in the LLVM bitcode because
# we pass -frecord-gcc-switches.
# Check for a line that has "-flto" after (or without) "-fno-lto".
llvm-strings ${file_name} | while read line ; do
flto=$(echo $line | grep -o -b -e -flto | tail -n 1 | cut -d : -f 1)
fnolto=$(echo $line | grep -o -b -e -fno-lto | tail -n 1 | cut -d : -f 1)
if test -n "$flto" && { test -z "$fnolto" || test "$flto" -gt "$fnolto"; } ; then
echo "Compiling LLVM bitcode file ${file_name}."
clang ${CLANG_FLAGS} -fno-lto -Wno-unused-command-line-argument \
-x ir ${file_name} -c -o ${file_name}
break
fi
done
elif [[ "${file_type}" == *"current ar archive"* ]]; then
echo "Unpacking ar archive ${file_name} to check for LLVM bitcode components."
# create archive stage for objects
local archive_stage=$(mktemp -d)
local archive=${file_name}
pushd ${archive_stage}
ar x ${archive}
for archived_file in $(find -not -type d); do
check_convert_bitcode ${archived_file} ${CLANG_FLAGS}
echo "Repacking ${archived_file} into ${archive}."
ar r ${archive} ${archived_file}
done
popd
fi
}
echo "Checking for LLVM bitcode artifacts"
export -f check_convert_bitcode
# Deduplicate by device:inode to avoid processing hardlinks in parallel.
find "$RPM_BUILD_ROOT" -type f -name "*.[ao]" -printf "%D:%i %p\n" | \
awk '!seen[$1]++' | cut -d" " -f2- | \
xargs -d"\n" -r -n1 -P$NCPUS sh -c "check_convert_bitcode \$@ $CLANG_FLAGS" ARG0

@ -0,0 +1,165 @@
#!/bin/bash -eu
# If using normal root, avoid changing anything.
if [ -z "$RPM_BUILD_ROOT" -o "$RPM_BUILD_ROOT" = "/" ]; then
exit 0
fi
exclude_files=""
exclude_files_from=""
exclude_shebangs=""
exclude_shebangs_from=""
usage() {
local verbose=$1 && shift
local outfile=$1 && shift
local status=$1 && shift
(
echo 'usage: brp-mangle-shebangs [--files <regexp>] [--files-from <file>] [--shebangs <regexp>] [--shebangs-from <file>]'
if [ "${verbose}" == "yes" ]; then
echo ' --files: extended regexp of files to ignore'
echo ' --files-from: file containing a list of extended regexps of files to ignore'
echo ' --shebangs: extended regexp of shebangs to ignore'
echo ' --shebangs-from: file containing a list of extended regexps of shebangs to ignore'
fi
) >>${outfile}
exit ${status}
}
while [ $# -gt 0 ] ; do
case "$1" in
--files)
exclude_files="${2}"
shift
;;
--files=*)
exclude_files="${1##--files=}"
;;
--files-from)
exclude_files_from="${2}"
shift
;;
--files-from=*)
exclude_files_from="${1##--files-from=}"
;;
--shebangs)
exclude_shebangs="${2}"
shift
;;
--shebangs=*)
exclude_shebangs="${1##--shebangs=}"
;;
--shebangs-from)
exclude_shebangs_from="${2}"
shift
;;
--shebangs-from=*)
exclude_shebangs_from="${1##--shebangs-from=}"
;;
--help|--usage|"-?"|-h)
usage yes /dev/stdout 0
;;
*)
echo "Unknown option \"${1}\"" 1>&2
usage no /dev/stderr 1
;;
esac
shift
done
cd "$RPM_BUILD_ROOT"
# Large packages such as kernel can have thousands of executable files.
# We take care to not fork/exec thousands of "file"s and "grep"s,
# but run just two of them.
# (Take care to exclude filenames which would mangle "file" output).
find -executable -type f ! -path '*:*' ! -path $'*\n*' \
| file -N --mime-type -f - \
| grep -P ".+(?=: (text/|application/javascript))" \
| {
fail=0
while IFS= read -r line; do
f=${line%%:*}
# Remove the dot
path="${f#.}"
if [ -n "$exclude_files" ]; then
echo "$path" | grep -q -E "$exclude_files" && continue
fi
if [ -n "$exclude_files_from" ]; then
echo "$path" | grep -q -E -f "$exclude_files_from" && continue
fi
if ! read shebang_line < "$f"; then
echo >&2 "*** WARNING: Cannot read the first line from $f, removing executable bit"
ts=$(stat -c %y "$f")
chmod -x "$f"
touch -d "$ts" "$f"
continue
fi
orig_shebang="${shebang_line#\#!}"
if [ "$orig_shebang" = "$shebang_line" ]; then
echo >&2 "*** WARNING: $f is executable but has no shebang, removing executable bit"
ts=$(stat -c %y "$f")
chmod -x "$f"
touch -d "$ts" "$f"
continue
fi
# Trim spaces
while shebang="${orig_shebang// / }"; [ "$shebang" != "$orig_shebang" ]; do
orig_shebang="$shebang"
done
# Treat "#! /path/to " as "#!/path/to"
orig_shebang="${orig_shebang# }"
shebang="$orig_shebang"
if [ -z "$shebang" ]; then
echo >&2 "*** WARNING: $f is executable but has empty shebang, removing executable bit"
ts=$(stat -c %y "$f")
chmod -x "$f"
touch -d "$ts" "$f"
continue
fi
if [ -n "${shebang##/*}" ]; then
echo >&2 "*** ERROR: $f has shebang which doesn't start with '/' ($shebang)"
fail=1
continue
fi
if ! { echo "$shebang" | grep -q -P "^/(?:usr/)?(?:bin|sbin)/"; }; then
continue
fi
# Replace "special" env shebang:
# /whatsoever/env /whatever/foo → /whatever/foo
shebang=$(echo "$shebang" | sed -r -e 's@^(.+)/env /(.+)$@/\2@')
# /whatsoever/env foo → /whatsoever/foo
shebang=$(echo "$shebang" | sed -r -e 's@^(.+/)env (.+)$@\1\2@')
# If the shebang now starts with /bin, change it to /usr/bin
# https://bugzilla.redhat.com/show_bug.cgi?id=1581757
shebang=$(echo "$shebang" | sed -r -e 's@^/bin/@/usr/bin/@')
# Replace ambiguous python with python2
py_shebang=$(echo "$shebang" | sed -r -e 's@/usr/bin/python(\s|$)@/usr/bin/python2\1@')
if [ "$shebang" != "$py_shebang" ]; then
echo >&2 "*** ERROR: ambiguous python shebang in $path: #!$orig_shebang. Change it to python3 (or python2) explicitly."
fail=1
elif [ "#!$shebang" != "#!$orig_shebang" ]; then
echo "mangling shebang in $path from $orig_shebang to #!$shebang"
ts=$(stat -c %y "$f")
sed -i -e "1c #!$shebang" "$f"
touch -d "$ts" "$f"
fi
done
exit $fail
}

@ -0,0 +1,17 @@
#!/usr/bin/sh
# If using normal root, avoid changing anything.
if [ -z "$RPM_BUILD_ROOT" ] || [ "$RPM_BUILD_ROOT" = "/" ]; then
exit 0
fi
STRIP=${1:-strip}
NCPUS=${RPM_BUILD_NCPUS:-1}
case `uname -a` in
Darwin*) exit 0 ;;
*) ;;
esac
# Strip ELF binaries
find "$RPM_BUILD_ROOT" -type f -name '*.[ao]' \! -regex "$RPM_BUILD_ROOT/*usr/lib/debug.*" -print0 | \
eu-elfclassify --not-program --not-library --not-linux-kernel-module --stdin0 --print0 | xargs -0 -r -P$NCPUS -n32 sh -c "$STRIP -p -R .gnu.lto_* -R .gnu.debuglto_* -N __gnu_lto_v1 \"\$@\"" ARG0

@ -0,0 +1,743 @@
This document contains documentation of the individual compiler flags
and how to use them.
[TOC]
# Using RPM build flags
The %set_build_flags macro sets the environment variables `CFLAGS`,
`CXXFLAGS`, `FFLAGS`, `FCFLAGS`, `VALAFLAGS`, `LDFLAGS` and `LT_SYS_LIBRARY_PATH` to
the value of their corresponding rpm macros. `%set_build_flags` is automatically
called prior to the `%build`, `%check`, and `%install` phases so these flags can be
used by makefiles and other build tools.
You can opt out of this behavior by doing:
%undefine _auto_set_build_flags
If you do opt out of this behavior, you can still manually use `%set_build_flags`
by adding it to the `%build` section of your spec file or by using one of the
build system helper macros like `%configure`, `%cmake`, and `%meson`.
For packages which use autoconf to set up the build environment, use
the `%configure` macro to obtain the full complement of flags, like
this:
%configure
This will invoke `./configure` with arguments (such as
`--prefix=/usr`) to adjust the paths to the packaging defaults. Prior
to that, some common problems in autotools scripts are automatically
patched across the source tree.
Individual build flags are also available through RPM macros:
* `%{build_cc}` for the command name of the C compiler.
* `%{build_cxx}` for the command name of the C++ compiler.
* `%{build_cpp}` for the command name of the C-compatible preprocessor.
* `%{build_cflags}` for the C compiler flags (also known as the
`CFLAGS` variable).
* `%{build_cxxflags}` for the C++ compiler flags (usually assigned to
the `CXXFLAGS` shell variable).
* `%{build_fflags}` for `FFLAGS` (the Fortran compiler flags, also
known as the `FCFLAGS` variable).
* `%{build_valaflags}` for `VALAFLAGS` (the Vala compiler flags)
* `%{build_ldflags}` for the linker (`ld`) flags, usually known as
`LDFLAGS`. Note that the contents quote linker arguments using
`-Wl`, so this variable is intended for use with the `gcc` compiler
driver. At the start of the `%build` section, the environment
variable `RPM_LD_FLAGS` is set to this value.
The C and C++ compiler flags are historically available as the
`%{optflags}` macro. These flags may not contain flags that work with
certain languagues or compiler front ends, so the language-specific
`%build_*` are more precise. At the start of the `%build` section,
the environment variable `RPM_OPT_FLAGS` is set to the `%{optflags}`
value; similar limitations apply.
The variable `LT_SYS_LIBRARY_PATH` is defined here to prevent the `libtool`
script (v2.4.6+) from hardcoding `%_libdir` into the binaries' `RPATH`.
These RPM macros do not alter shell environment variables.
For some other build tools separate mechanisms exist:
* CMake builds use the the `%cmake` macro from the `cmake-rpm-macros`
package.
Care must be taking not to compile the current selection of compiler
flags into any RPM package besides `redhat-rpm-config`, so that flag
changes are picked up automatically once `redhat-rpm-config` is
updated.
# Flag selection for the build type
The default flags are suitable for building applications.
For building shared objects, you must compile with `-fPIC` in
(`CFLAGS` or `CXXFLAGS`) and link with `-shared` (in `LDFLAGS`).
For other considerations involving shared objects, see:
* [Fedora Packaging Guidelines: Shared Libraries](https://docs.fedoraproject.org/en-US/packaging-guidelines/#_shared_libraries)
# Customizing compiler and other build flags
It is possible to set RPM macros to change some aspects of the
compiler flags. Changing these flags should be used as a last
recourse if other workarounds are not available.
### Toolchain selection
The default toolchain uses GCC, and the `%toolchain` macro is defined
as `gcc`.
It is enough to override `toolchain` macro and all relevant macro for C/C++
compilers will be switched. Either in the spec or in the command-line.
%global toolchain clang
or:
rpmbuild -D "toolchain clang" …
Inside a spec file it is also possible to determine which toolchain is in use
by testing the same macro. For example:
%if "%{toolchain}" == "gcc"
BuildRequires: gcc
%endif
or:
%if "%{toolchain}" == "clang"
BuildRequires: clang compiler-rt
%endif
### Controlling Type Safety
The macro `%build_type_safety_c` can be set to change the C type
safety level. The default level is 3, see below. It can be set to 0
to get historic levels of type safety. Changing the type safety level
may depend on correct `CFLAGS` propagation during the build. The
`%build_type_safety_c` macro needs to be set before `CFLAGS`-related
macros are expanded by RPM (that is, earlier in the file works
better).
Packages can set `%build_type_safety_c` to higher values to adopt
future distribution-wide type-safety increases early. When changing
the `%build_type_safety_c` level to increase it, spec file should use
a construct like this to avoid *lowering* a future default:
```
%if %build_type_safety_c < 4
%global build_type_safety_c 4
%endif
```
At level 0, all C constructs that GCC accepts for backwards
compatibility with obsolete language standards are accepted during
package builds. This is achieved by passing `-fpermissive` to GCC.
At level 1, the following additional error categories are enabled:
* `-Werror=implicit-int`: Reject declarations and definitions that
omit a type name where one is required. Examples are:
`extern int_variable;`, `extern int_returning_function (void);`,
and missing separate parameter type declarations in old-style
function definitions.
* `-Werror=implicit-function-declaration`: Reject calls to functions
to undeclared functions such as `function_not_defined_anywhere ()`.
Previously, such expressions where we compiled as if a declaration
`extern int function_not_defined_anywhere ();` (a prototype-less
function declaration) were in scope.
* `-Werror=return-mismatch`: Reject `return` statements with missing
or extra expressions, based on the declared return type of the
function.
* `-Wdeclaration-missing-parameter-type`: Reject function declarations
that contain unknown type names (which used to be treated as ignored
identifier names).
At level 2, the following error category is enabled in addition:
* `-Werror=int-conversion`: Reject the use of integer expressions
where a pointer type expected, and pointer expressions where an
integer type is expected. Without this option, GCC may produce an
executable, but often, there are failures at run time because not
the full 64 bits of pointers are preserved.
The additional level 3 error category is:
* `-Werror=incompatible-pointer-types`: An expression of one pointer
type is used where different pointer type is expected. (This does
not cover signed/unsigned mismatches in the pointer target type.)
Clang errors out on more obsolete and invalid C constructs than C, so
the type safety is higher by default than with the GCC toolchain.
### Disable autotools compatibility patching
By default, the invocation of the `%configure` macro replaces
`config.guess` files in the source tree with the system version. To
disable that, define this macro:
%global _configure_gnuconfig_hack 0
`%configure` also patches `ltmain.sh` scripts, so that linker flags
are set as well during libtool-. This can be switched off using:
%global _configure_libtool_hardening_hack 0
Further patching happens in LTO mode, see below.
### Other autotools compatibility settings
During `%configure`, `--runstatedir` is automatically passed to the
`configure` script if support for this option is detected. This
detection can fail if the package has multiple `configure` scripts
that invoke each other, and only some of them support `--runstatedir`.
To disable passing `--runstatedir`, use:
%undefine _configure_use_runstatedir
### Disabling Link-Time Optimization
By default, builds use link-time optimization. In this build mode,
object code is generated at the time of the final link, by combining
information from all available translation units, and taking into
account which symbols are exported.
To disable this optimization, include this in the spec file:
%global _lto_cflags %{nil}
If LTO is enabled, `%configure` applies some common required fixes to
`configure` scripts. To disable that, define the RPM macro
`_fix_broken_configure_for_lto` as `true` (sic; it has to be a shell
command).
### Lazy binding
If your package depends on the semantics of lazy binding (e.g., it has
plugins which load additional plugins to complete their dependencies,
before which some referenced functions are undefined), you should put
`-Wl,-z,lazy` at the end of the `LDFLAGS` setting when linking objects
which have such requirements. Under these circumstances, it is
unnecessary to disable hardened builds (and thus lose full ASLR for
executables), or link everything without `-Wl,z,now` (non-lazy
binding).
### Hardened builds
By default, the build flags enable fully hardened builds. To change
this, include this in the RPM spec file:
%undefine _hardened_build
This turns off certain hardening features, as described in detail
below. The main difference is that executables will be
position-dependent (no full ASLR) and use lazy binding.
### Source Fortification
By default, the build flags include `-Wp,-D_FORTIFY_SOURCE=3`: Source
fortification activates various hardening features in glibc:
* String functions such as `memcpy` attempt to detect buffer lengths
and terminate the process if a buffer overflow is detected.
* `printf` format strings may only contain the `%n` format specifier
if the format string resides in read-only memory.
* `open` and `openat` flags are checked for consistency with the
presence of a *mode* argument.
* Plus other minor hardening changes.
These changes can, on rare occasions, break valid programs. The source
fortification level can be overridden by adding this in the RPM spec file:
%define _fortify_level 2
to reduce source fortification level to 2 or:
%undefine _fortify_level
to disable fortification altogether.
### Annotated builds/watermarking
By default, the build flags cause a special output section to be
included in ELF files which describes certain aspects of the build.
To change this for all compiler invocations, include this in the RPM
spec file:
%undefine _annotated_build
Be warned that this turns off watermarking, making it impossible to do
full hardening coverage analysis for any binaries produced.
It is possible to disable annotations for individual compiler
invocations, using the `-fplugin-arg-annobin-disable` flag. However,
the annobin plugin must still be loaded for this flag to be
recognized, so it has to come after the hardening flags on the command
line (it has to be added at the end of `CFLAGS`, or specified after
the `CFLAGS` variable contents).
### Keeping dependencies on unused shared objects
By default, ELF shared objects which are listed on the linker command
line, but which have no referencing symbols in the preceding objects,
are not added to the output file during the final link.
In order to keep dependencies on shared objects even if none of
their symbols are used, include this in the RPM spec file:
%undefine _ld_as_needed
For example, this can be required if shared objects are used for their
side effects in ELF constructors, or for making them available to
dynamically loaded plugins.
### Switching to legacy relative relocations
By default, ELF objects use the architecture-independent `DT_RELR`
mechanism for relative relocations. To switch to the older,
architecture-specific relocation scheme, add this to the RPM spec file:
%undefine _ld_pack_relocs
This adds `-Wl,-z,pack-relative-relocs` to the linker flags (`LDFLAGS`).
### Specifying the build-id algorithm
If you want to specify a different build-id algorithm for your builds, you
can use the `%_build_id_flags` macro:
%_build_id_flags -Wl,--build-id=sha1
### Strict symbol checks in the link editor (ld)
Optionally, the link editor will refuse to link shared objects which
contain undefined symbols. Such symbols lack symbol versioning
information and can be bound to the wrong (compatibility) symbol
version at run time, and not the actual (default) symbol version which
would have been used if the symbol definition had been available at
static link time. Furthermore, at run time, the dynamic linker will
not have complete dependency information (in the form of DT_NEEDED
entries), which can lead to errors (crashes) if IFUNC resolvers are
executed before the shared object containing them is fully relocated.
To switch on these checks, define this macro in the RPM spec file:
%global _strict_symbol_defs_build 1
If this RPM spec option is active, link failures will occur if the
linker command line does not list all shared objects which are needed.
In this case, you need to add the missing DSOs (with linker arguments
such as `-lm`). As a result, the link editor will also generated the
necessary DT_NEEDED entries.
In some cases (such as when a DSO is loaded as a plugin and is
expected to bind to symbols in the main executable), undefined symbols
are expected. In this case, you can add
%undefine _strict_symbol_defs_build
to the RPM spec file to disable these strict checks. Alternatively,
you can pass `-z undefs` to ld (written as `-Wl,-z,undefs` on the gcc
command line). The latter needs binutils 2.29.1-12.fc28 or later.
### Legacy -fcommon
Since version 10, [gcc defaults to `-fno-common`](https://gcc.gnu.org/gcc-10/porting_to.html#common).
Builds may fail with `multiple definition of ...` errors.
As a short term workaround for such failure,
it is possible to add `-fcommon` to the flags by defining `%_legacy_common_support`.
%global _legacy_common_support 1
Properly fixing the failure is always preferred!
### Package note on ELF objects
A note that describes the package name, version, and architecture is
inserted via a linker script (`%_package_note_file`). The script is
generated when `%set_build_flags` is called. The linker option that
injects the linker script is added to `%{build_ldflags}` via the
`%{_package_note_flags}` macro.
To opt out of the use of this feature completely, the best way is to
undefine the first macro. Include this in the spec file:
%undefine _package_note_file
The other macros can be undefined too to replace parts of the functionality.
If `%_generate_package_note_file` is undefined, the linker script will not
be generated, but the link flags may still refer to it. This may be useful
if the default generation method is insufficient and a different mechanism
will be used to generate `%_package_note_file`. If `%_package_note_flags`
is undefined, the linker argument that injects the script will not be added
to `%build_ldfags`, but the linker script would still be generated.
### Frame pointers
Frame pointers will be included by default via the `%_include_frame_pointers`
macro. To opt out, the best way is to undefine the macro. Include this in the
spec file:
%undefine _include_frame_pointers
Note that opting out might still result in frame pointers being included on
architectures where they are part of the ABI (e.g. aarch64) depending on
compiler defaults.
### Post-build ELF object processing
By default, DWARF debugging information is separated from installed
ELF objects and put into `-debuginfo` subpackages. To disable most
debuginfo processing (and thus the generation of these subpackages),
define `_enable_debug_packages` as `0`.
Processing of debugging information is controlled using the
`find-debuginfo` tool from the `debugedit` package. Several aspects
of its operation can be controlled at the RPM level.
* Creation of `-debuginfo` subpackages is enabled by default.
To disable, undefine `_debuginfo_subpackages`.
* Likewise, `-debugsource` subpackages are automatically created.
To disable, undefine `_debugsource_subpackages`.
See [Separate Subpackage and Source Debuginfo](https://fedoraproject.org/wiki/Changes/SubpackageAndSourceDebuginfo)
for background information.
* `_build_id_links`, `_unique_build_ids`, `_unique_debug_names`,
`_unique_debug_srcs` control how debugging information and
corresponding source files are represented on disk.
See `/usr/lib/rpm/macros` for details. The defaults
enable parallel installation of `-debuginfo` packages for
different package versions, as described in
[Parallel Installable Debuginfo](https://fedoraproject.org/wiki/Changes/ParallelInstallableDebuginfo).
* By default, a compressed symbol table is preserved in the
`.gnu_debugdata` section. To disable that, undefine
`_include_minidebuginfo`.
* To speed up debuggers, a `.gdb_index` section is created. It can be
disabled by undefining `_include_gdb_index`.
* Missing build IDs result in a build failure. To ignore such
problems, undefine `_missing_build_ids_terminate_build`.
* During processing, build IDs are recomputed to match the binary
content. To skip this step, define `_no_recompute_build_ids` as `1`.
* By default, the options in `_find_debuginfo_dwz_opts` turn on `dwz`
(DWARF compression) processing. Undefine this macro to disable this
step.
* Additional options can be passed by defining the
`_find_debuginfo_opts` macro.
After separation of debugging information, additional transformations
are applied, most of them also related to debugging information.
These steps can be skipped by undefining the corresponding macros:
* `__brp_strip`: Removal of leftover debugging information. The tool
specified by the `__strip` macro is invoked with the `-g` option on
ELF object (`.o`) files.
* `__brp_strip_static_archive`: This is similar to `__brp_strip`, but
processes static `.a` archives instead.
* `__brp_strip_comment_note`: This step removes unallocated `.note`
sections, and `.comment` sections from ELF files.
* `__brp_strip_lto`: This step removes GCC LTO intermediate representation
in ELF sections starting with `.gnu.lto_` and `.gnu.debuglto_`. Skipping
this step is strongly discouraged because the tight coupling of LTO
data with the GCC version. The underlying tool is again determined by the
`__strip` macro.
* `__brp_llvm_compile_lto_elf`: This step replaces LLVM bitcode files
with object files, thereby removing LLVM bitcode from the installed
files. This transformation is applied to object files in static `.a`
archives, too.
* `__brp_ldconfig`: For each shared object on the library search path
whose soname does not match its file name, a symbolic link from the
soname to the file name is created. This way, these shared objects
are loadable immediately after installation, even if they are not yet
listed in the `/etc/ld.so.cache` file (because `ldconfig` has not been
invoked yet).
* `__brp_remove_la_files`: This step removes libtool-generated `.la`
files from the installed files.
# Individual compiler flags
Compiler flags end up in the environment variables `CFLAGS`,
`CXXFLAGS`, `FFLAGS`, and `FCFLAGS`.
The general (architecture-independent) build flags are:
* `-O2`: Turn on various GCC optimizations. See the
[GCC manual](https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O2).
Optimization improves performance, the accuracy of warnings, and the
reach of toolchain-based hardening, but it makes debugging harder.
* `-g`: Generate debugging information (DWARF). In Fedora, this data
is separated into `-debuginfo` RPM packages whose installation is
optional, so debuging information does not increase the size of
installed binaries by default.
* `-pipe`: Run compiler and assembler in parallel and do not use a
temporary file for the assembler input. This can improve
compilation performance. (This does not affect code generation.)
* `-Wall`: Turn on various GCC warnings.
See the [GCC manual](https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wall).
* `-Wno-complain-wrong-lang`: Do not warn about front end mismatches
(e.g, using `-Werror=format-security` with Fortran). Only included
in `%optflags`, and not the front-end-specific `%build_*` macros.
* `-Werror=format-security`: Turn on format string warnings and treat
them as errors.
See the [GCC manual](https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wformat-security).
This can occasionally result in compilation errors. In that case,
the best option is to rewrite the source code so that only constant
format strings (string literals) are used.
* Other `-Werror=` options. See **Controlling C Type Safety**.
* `-U_FORTIFY_SOURCE, -Wp,-U_FORTIFY_SOURCE -Wp,-D_FORTIFY_SOURCE=3`:
See the Source Fortification section above and the `%_fortify_level`
override.
* `-fexceptions`: Provide exception unwinding support for C programs.
See the [`-fexceptions` option in the GCC
manual](https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#index-fexceptions)
and the [`cleanup` variable
attribute](https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-cleanup-variable-attribute).
This also hardens cancellation handling in C programs because
it is not required to use an on-stack jump buffer to install
a cancellation handler with `pthread_cleanup_push`. It also makes
it possible to unwind the stack (using C++ `throw` or Rust panics)
from C callback functions if a C library supports non-local exits
from them (e.g., via `longjmp`).
* `-fasynchronous-unwind-tables`: Generate full unwind information
covering all program points. This is required for support of
asynchronous cancellation and proper unwinding from signal
handlers. It also makes performance and debugging tools more
useful because unwind information is available without having to
install (and load) debugging information. (Not enabled on armhfp
due to architectural differences in stack management.)
* `-Wp,-D_GLIBCXX_ASSERTIONS`: Enable lightweight assertions in the
C++ standard library, such as bounds checking for the subscription
operator on vectors. (This flag is added to both `CFLAGS` and
`CXXFLAGS`; C compilations will simply ignore it.)
* `-fstack-protector-strong`: Instrument functions to detect
stack-based buffer overflows before jumping to the return address on
the stack. The *strong* variant only performs the instrumentation
for functions whose stack frame contains addressable local
variables. (If the address of a variable is never taken, it is not
possible that a buffer overflow is caused by incorrect pointer
arithmetic involving a pointer to that variable.)
* `-fstack-clash-protection`: Turn on instrumentation to avoid
skipping the guard page in large stack frames. (Without this flag,
vulnerabilities can result where the stack overlaps with the heap,
or thread stacks spill into other regions of memory.) This flag is
fully ABI-compatible and has adds very little run-time overhead.
This flag is currently not available on armhfp (both `gcc` and `clang`
toolchains) and on aarch64 with the `clang` toolchain.
* `-flto=auto`: Enable link-time optimization (LTO), using `make` job server
integration for parallel processing. (`gcc` toolchain only)
* `-ffat-lto-objects`: Generate EFL object files which contain both
object code and LTO intermediate representation. (`gcc` toolchain only)
* `-flto`: Enable link-time optimization. (`clang` toolchain only)
* `-grecord-gcc-switches`: Include select GCC command line switches in
the DWARF debugging information. This is useful for detecting the
presence of certain build flags and general hardening coverage.
* `-fcommon`: This optional flag is used to build legacy software
which relies on C tentative definitions. It is disabled by default.
For hardened builds (which are enabled by default, see above for how
to disable them), the flag
`-specs=/usr/lib/rpm/redhat/redhat-hardened-cc1` is added to the
command line. It adds the following flag to the command line:
* `-fPIE`: Compile for a position-independent executable (PIE),
enabling full address space layout randomization (ASLR). This is
similar to `-fPIC`, but avoids run-time indirections on certain
architectures, resulting in improved performance and slightly
smaller executables. However, compared to position-dependent code
(the default generated by GCC), there is still a measurable
performance impact.
If the command line also contains `-r` (producing a relocatable
object file), `-fpic` or `-fPIC`, this flag is automatically
dropped. (`-fPIE` can only be used for code which is linked into
the main program.) Code which goes into static libraries should be
compiled with `-fPIE`, except when this code is expected to be
linked into DSOs, when `-fPIC` must be used.
To be effective, `-fPIE` must be used with the `-pie` linker flag
when producing an executable, see below.
To support [binary watermarks for ELF
objects](https://fedoraproject.org/wiki/Toolchain/Watermark) using
annobin, the `-specs=/usr/lib/rpm/redhat/redhat-annobin-cc1` flag is
added by default (with the `gcc` toolchain). This can be switched off
by undefining the `%_annotated_build` RPM macro (see above). Binary
watermarks are currently disabled on armhpf, and with the `clang`
toolchain.
If frame pointers are enabled by default (via `%_include_frame_pointers`),
the `-fno-omit-frame-pointer` will be added on all architectures except i686
and s390x. Additional flags will be added on specific architectures:
* `-mno-omit-leaf-frame-pointer` on x86_64 and aarch64
### Architecture-specific compiler flags
These compiler flags are enabled for all builds (hardened/annotated or
not), but their selection depends on the architecture:
* `-fcf-protection`: Instrument binaries to guard against
ROP/JOP exploitation techniques. Used on x86_64.
* `-mbranch-protection=standard`: Instrument binaries to guard against
ROP/JOP exploitation techniques. Used on aarch64.
* `-m64` and `-m32`: Some GCC builds support both 32-bit and 64-bit in
the same compilation. For such architectures, the RPM build process
explicitly selects the architecture variant by passing this compiler
flag.
In addition, `redhat-rpm-config` re-selects the built-in default
tuning in the `gcc` package. These settings are:
* **armhfp**: `-march=armv7-a -mfpu=vfpv3-d16 -mfloat-abi=hard`
selects an Arm subarchitecture based on the ARMv7-A architecture
with 16 64-bit floating point registers. `-mtune=cortex-8a` selects
tuning for the Cortex-A8 implementation (while preserving
compatibility with other ARMv7-A implementations).
`-mabi=aapcs-linux` switches to the AAPCS ABI for GNU/Linux.
* **i686**: `-march=i686` is used to select a minmum support CPU level
of i686 (corresponding to the Pentium Pro). SSE2 support is enabled
with `-msse2` (so only CPUs with SSE2 support can run the compiled
code; SSE2 was introduced first with the Pentium 4).
`-mtune=generic` activates tuning for a current blend of CPUs (under
the assumption that most users of i686 packages obtain them through
an x86_64 installation on current hardware). `-mfpmath=sse`
instructs GCC to use the SSE2 unit for floating point math to avoid
excess precision issues. `-mstackrealign` avoids relying on the
stack alignment guaranteed by the current version of the i386 ABI.
* **ppc64le**: `-mcpu=power8 -mtune=power8` selects a minimum
supported CPU level of POWER8 (the first CPU with ppc64le support)
and tunes for POWER8.
* **s390x**: `-march=zEC12 -mtune=z13` specifies a minimum supported
CPU level of zEC12, while optimizing for a subsequent CPU generation
(z13).
* **x86_64**: `-mtune=generic` selects tuning which is expected to
beneficial for a broad range of current CPUs. Distribution-specific
defaults for `-march=x86-64-v2` or `-march=x86-64-v3` may be
applied. The default can be overriden (for any distribution)
by specifying `--target x86_64_v2`, `--target x86_64_v3`,
`--target x86_64_v4` in the `rpmbuild` invocation.
With the GCC toolchain, TLS descriptors are enabled using
`-mtls-dialect=gnu2`.
* **aarch64** does not have any architecture-specific tuning.
### Vala-specific compiler flags
* `-g`: causes valac to emit `#line` directives in the generated C
source code. This improves backtrace generation by causing gdb to
point to Vala source file and line number instead of the generated C
source when possible.
# Individual linker flags
Linker flags end up in the environment variable `LDFLAGS`.
The linker flags listed below are injected. Note that they are
prefixed with `-Wl` because it is expected that these flags are passed
to the compiler driver `gcc`, and not directly to the link editor
`ld`.
* `-z relro`: Activate the *read-only after relocation* feature.
Constant data and relocations are placed on separate pages, and the
dynamic linker is instructed to revoke write permissions after
dynamic linking. Full protection of relocation data requires the
`-z now` flag (see below).
* `--as-needed`: In the final link, only generate ELF dependencies
for shared objects that actually provide symbols required by the link.
Shared objects which are not needed to fulfill symbol dependencies
are essentially ignored due to this flag.
* `-z pack-relative-relocs`: Use the portable `DT_RELR` scheme for
relative relocations, resulting in reduced startup time compared to
legacy architecture-specific relocations. (`-z pack-relative-relocs`
is currently disabled on aarch64 and s390x due to toolchain limitations.)
* `-z defs`: Refuse to link shared objects (DSOs) with undefined symbols
(optional, see above).
For hardened builds, some more linker options are added to the
compiler driver command line. These can be disabled by undefining the
`%_hardened_build` macro - see above.
* `-pie`: Produce a PIE binary. This is only activated for the main
executable, and only if it is dynamically linked. This requires
that all objects which are linked in the main executable have been
compiled with `-fPIE` or `-fPIC` (or `-fpie` or `-fpic`; see above).
By itself, `-pie` has only a slight performance impact because it
disables some link editor optimization, however the `-fPIE` compiler
flag has some overhead.
Note: this option is added via adding a spec file to the compiler
driver command line (`-specs=/usr/lib/rpm/redhat/redhat-hardened-ld`)
rather than using the `-Wl` mechanism mentioned above. As a result
this option is only enabled if the compiler driver is gcc.
* `-z now`: Disable lazy binding and turn on the `BIND_NOW` dynamic
linker feature. Lazy binding involves an array of function pointers
which is writable at run time (which could be overwritten as part of
security exploits, redirecting execution). Therefore, it is
preferable to turn of lazy binding, although it increases startup
time.
In addition hardened builds default to converting a couple of linker
warning messages into errors, because they represent potential
missed hardening opportunities, and warnings in the linker's output are
often ignored. This behaviour can be turned off by undefining the
`%_hardened_build` macro as mentioned above, or by undefining the
`%_hardened_linker_errors` macro. The linker options enabled by this
feature are:
* `--error-rwx-segments`: Generates an error if an output binary would
contain a loadable memory segment with read, write and execute
permissions. It will also generate an error if a thread local
storage (TLS) segment is created with execute permission. The
error can be disabled on an individual basis by adding the
`--no-warn-rwx-segments` option to the linker command line.
* `--error-execstack`: Generates an error if an output binary would
contain a stack that is held in memory with execute permission.
If a binary is being intentionally created with an executable stack
then the linker command line option `-z execstack` can be used to
indicate this.
Note: these options are added via a spec file on the compiler driver
command line (`-specs=/usr/lib/rpm/redhat/redhat-hardened-ld-errors`)
rather than using the `-Wl` mechanism mentioned above. As a result
these options are only enabled if the compiler driver is gcc. In
addition the spec file only adds the options if the `-fuse-ld=...`
option has not been enabled. This prevents the options from being
used when the gold or lld linkers are enabled.
# Support for extension builders
Some packages include extension builders that allow users to build
extension modules (which are usually written in C and C++) under the
control of a special-purpose build system. This is a common
functionality provided by scripting languages such as Python and Perl.
Traditionally, such extension builders captured the Fedora build flags
when these extension were built. However, these compiler flags are
adjusted for a specific Fedora release and toolchain version and
therefore do not work with a custom toolchain (e.g., different C/C++
compilers), and users might want to build their own extension modules
with such toolchains.
The macros `%{extension_cflags}`, `%{extension_cxxflags}`,
`%{extension_fflags}`, `%{extension_ldflags}` contain a subset of
flags that have been adjusted for compatibility with alternative
toolchains.
Currently the -fexceptions and -fcf-protection flags are preserved
for binary compatibility with the languages the extensions are
built against.
Extension builders should detect whether they are performing a regular
RPM build (e.g., by looking for an `RPM_OPT_FLAGS` variable). In this
case, they should use the *current* set of Fedora build flags (that
is, the output from `rpm --eval '%{build_cflags}'` and related
commands). Otherwise, when not performing an RPM build, they can
either use hard-coded extension builder flags (thus avoiding a
run-time dependency on `redhat-rpm-config`), or use the current
extension builder flags (with a run-time dependency on
`redhat-rpm-config`).
As a result, extension modules built for Fedora will use the official
Fedora build flags, while users will still be able to build their own
extension modules with custom toolchains.

@ -0,0 +1,294 @@
-- Convenience Lua functions that can be used within rpm macros
-- Reads an rpm variable. Unlike a basic rpm.expand("{?foo}"), returns nil if
-- the variable is unset, which is convenient in lua tests and enables
-- differentiating unset variables from variables set to ""
local function read(rpmvar)
if not rpmvar or
(rpm.expand("%{" .. rpmvar .. "}") == "%{" .. rpmvar .. "}") then
return nil
else
return rpm.expand("%{?" .. rpmvar .. "}")
end
end
-- Returns true if the macro that called this function had flag set
--  for example, hasflag("z") would give the following results:
-- %foo -z bar → true
-- %foo -z → true
-- %foo → false
local function hasflag(flag)
return (rpm.expand("%{-" .. flag .. "}") ~= "")
end
-- Returns the argument passed to flag in the macro that called this function
--  for example, readflag("z") would give the following results:
-- %foo -z bar → bar
-- %foo → nil
-- %foo -z "" → empty string
-- %foo -z '' → empty string
local function readflag(flag)
if not hasflag(flag) then
return nil
else
local a = rpm.expand("%{-" .. flag .. "*}")
-- Handle "" and '' as empty strings
if (a == '""') or (a == "''") then
a = ''
end
return a
end
end
-- Sets a spec variable; echoes the result if verbose
local function explicitset(rpmvar, value, verbose)
local value = value
if (value == nil) or (value == "") then
value = "%{nil}"
end
rpm.define(rpmvar .. " " .. value)
if verbose then
rpm.expand("%{warn:Setting %%{" .. rpmvar .. "} = " .. value .. "}")
end
end
-- Unsets a spec variable if it is defined; echoes the result if verbose
local function explicitunset(rpmvar, verbose)
if (rpm.expand("%{" .. rpmvar .. "}") ~= "%{" .. rpmvar .. "}") then
rpm.define(rpmvar .. " %{nil}")
if verbose then
rpm.expand("%{warn:Unsetting %%{" .. rpmvar .. "}}")
end
end
end
-- Sets a spec variable, if not already set; echoes the result if verbose
local function safeset(rpmvar, value, verbose)
if (rpm.expand("%{" .. rpmvar .. "}") == "%{" .. rpmvar .. "}") then
explicitset(rpmvar,value,verbose)
end
end
-- Aliases a list of rpm variables to the same variables suffixed with 0 (and
-- vice versa); echoes the result if verbose
local function zalias(rpmvars, verbose)
for _, sfx in ipairs({{"","0"},{"0",""}}) do
for _, rpmvar in ipairs(rpmvars) do
local toalias = "%{?" .. rpmvar .. sfx[1] .. "}"
if (rpm.expand(toalias) ~= "") then
safeset(rpmvar .. sfx[2], toalias, verbose)
end
end
end
end
-- Takes a list of rpm variable roots and a suffix and alias current<root> to
-- <root><suffix> if it resolves to something not empty
local function setcurrent(rpmvars, suffix, verbose)
for _, rpmvar in ipairs(rpmvars) do
if (rpm.expand("%{?" .. rpmvar .. suffix .. "}") ~= "") then
explicitset( "current" .. rpmvar, "%{" .. rpmvar .. suffix .. "}", verbose)
else
explicitunset("current" .. rpmvar, verbose)
end
end
end
-- Echo the list of rpm variables, with suffix, if set
local function echovars(rpmvars, suffix)
for _, rpmvar in ipairs(rpmvars) do
rpmvar = rpmvar .. suffix
local header = string.sub(" " .. rpmvar .. ": ",1,21)
rpm.expand("%{?" .. rpmvar .. ":%{echo:" .. header .. "%{?" .. rpmvar .. "}}}")
end
end
-- Returns an array, indexed by suffix, containing the non-empy values of
-- <rpmvar><suffix>, with suffix an integer string or the empty string
local function getsuffixed(rpmvar)
local suffixes = {}
zalias({rpmvar})
for suffix=0,9999 do
local value = rpm.expand("%{?" .. rpmvar .. suffix .. "}")
if (value ~= "") then
suffixes[tostring(suffix)] = value
end
end
-- rpm convention is to alias no suffix to zero suffix
-- only add no suffix if zero suffix is different
local value = rpm.expand("%{?" .. rpmvar .. "}")
if (value ~= "") and (value ~= suffixes["0"]) then
suffixes[""] = value
end
return suffixes
end
-- Returns the list of suffixes, including the empty string, for which
-- <rpmvar><suffix> is set to a non empty value
local function getsuffixes(rpmvar)
suffixes = {}
for suffix in pairs(getsuffixed(rpmvar)) do
table.insert(suffixes,suffix)
end
table.sort(suffixes,
function(a,b) return (tonumber(a) or 0) < (tonumber(b) or 0) end)
return suffixes
end
-- Returns the suffix for which <rpmvar><suffix> has a non-empty value that
-- matches best the beginning of the value string
local function getbestsuffix(rpmvar, value)
local best = nil
local currentmatch = ""
for suffix, setvalue in pairs(getsuffixed(rpmvar)) do
if (string.len(setvalue) > string.len(currentmatch)) and
(string.find(value, "^" .. setvalue)) then
currentmatch = setvalue
best = suffix
end
end
return best
end
-- %writevars core
local function writevars(macrofile, rpmvars)
for _, rpmvar in ipairs(rpmvars) do
print("sed -i 's\029" .. string.upper("@@" .. rpmvar .. "@@") ..
"\029" .. rpm.expand( "%{" .. rpmvar .. "}" ) ..
"\029g' " .. macrofile .. "\n")
end
end
-- https://github.com/rpm-software-management/rpm/issues/566
-- Reformat a text intended to be used used in a package description, removing
-- rpm macro generation artefacts.
-- remove leading and ending empty lines
-- trim intermediary empty lines to a single line
-- fold on spaces
-- Should really be a %%{wordwrap:…} verb
local function wordwrap(text)
text = rpm.expand(text .. "\n")
text = string.gsub(text, "\t", " ")
text = string.gsub(text, "\r", "\n")
text = string.gsub(text, " +\n", "\n")
text = string.gsub(text, "\n+\n", "\n\n")
text = string.gsub(text, "^\n", "")
text = string.gsub(text, "\n( *)[-*—][  ]+", "\n%1 ")
output = ""
for line in string.gmatch(text, "[^\n]*\n") do
local pos = 0
local advance = ""
for word in string.gmatch(line, "%s*[^%s]*\n?") do
local wl, bad = utf8.len(word)
if not wl then
print("%{warn:Invalid UTF-8 sequence detected in:}" ..
"%{warn:" .. word .. "}" ..
"%{warn:It may produce unexpected results.}")
wl = bad
end
if (pos == 0) then
advance, n = string.gsub(word, "^(%s* ).*", "%1")
if (n == 0) then
advance = string.gsub(word, "^(%s*).*", "%1")
end
advance = string.gsub(advance, " ", " ")
pos = pos + wl
elseif (pos + wl < 81) or
((pos + wl == 81) and string.match(word, "\n$")) then
pos = pos + wl
else
word = advance .. string.gsub(word, "^%s*", "")
output = output .. "\n"
pos = utf8.len(word)
end
output = output .. word
if pos > 80 then
pos = 0
if not string.match(word, "\n$") then
output = output .. "\n"
end
end
end
end
output = string.gsub(output, "\n*$", "\n")
return output
end
-- Because rpmbuild will fail if a subpackage is declared before the source
-- package itself, provide a source package declaration shell as fallback.
local function srcpkg(verbose)
if verbose then
rpm.expand([[
%{echo:Creating a header for the SRPM from %%{source_name}, %%{source_summary} and}
%{echo:%%{source_description}. If that is not the intended result, please declare the}
%{echo:SRPM header and set %%{source_name} in your spec file before calling a macro}
%{echo:that creates other package headers.}
]])
end
print(rpm.expand([[
Name: %{source_name}
Summary: %{source_summary}
%description
%wordwrap -v source_description
]]))
explicitset("currentname", "%{source_name}", verbose)
end
-- %new_package core
local function new_package(source_name, pkg_name, name_suffix, first, verbose)
-- Safety net when the wrapper is used in conjunction with traditional syntax
if (not first) and (not source_name) then
rpm.expand([[
%{warn:Something already set a package name. However, %%{source_name} is not set.}
%{warn:Please set %%{source_name} to the SRPM name to ensure reliable processing.}
]])
if name_suffix then
print(rpm.expand("%package " .. name_suffix))
else
print(rpm.expand("%package -n " .. pkg_name))
end
return
end
-- New processing
if not (pkg_name or name_suffix or source_name) then
rpm.expand([[
%{error:You need to set %%{source_name} or provide explicit package naming!}
]])
end
if name_suffix then
print(rpm.expand("%package " .. name_suffix))
explicitset("currentname", "%{source_name}-" .. name_suffix, verbose)
else
if not source_name then
source_name = pkg_name
end
if (pkg_name == source_name) then
safeset("source_name", source_name, verbose)
print(rpm.expand("Name: %{source_name}"))
else
if source_name and first then
srcpkg(verbose)
end
print(rpm.expand("%package -n " .. pkg_name))
end
explicitset("currentname", pkg_name, verbose)
end
end
return {
read = read,
hasflag = hasflag,
readflag = readflag,
explicitset = explicitset,
explicitunset = explicitunset,
safeset = safeset,
zalias = zalias,
setcurrent = setcurrent,
echovars = echovars,
getsuffixed = getsuffixed,
getsuffixes = getsuffixes,
getbestsuffix = getbestsuffix,
writevars = writevars,
wordwrap = wordwrap,
new_package = new_package,
}

1774
SOURCES/config.guess vendored

File diff suppressed because it is too large Load Diff

1907
SOURCES/config.sub vendored

File diff suppressed because it is too large Load Diff

@ -0,0 +1,66 @@
#!/bin/bash
# dist.sh
# Author: Tom "spot" Callaway <tcallawa@redhat.com>
# License: GPL
# This is a script to output the value for the %{dist}
# tag. The dist tag takes the following format: .$type$num
# Where $type is one of: el, fc, rh
# (for RHEL, Fedora Core, and RHL, respectively)
# And $num is the version number of the distribution.
# NOTE: We can't detect Rawhide or Fedora Test builds properly.
# If we successfully detect the version number, we output the
# dist tag. Otherwise, we exit with no output.
RELEASEFILE=/etc/redhat-release
function check_num {
MAINVER=`cut -d "(" -f 1 < $RELEASEFILE | \
sed -e "s/[^0-9.]//g" -e "s/$//g" | cut -d "." -f 1`
echo $MAINVER | grep -q '[0-9]' && echo $MAINVER
}
function check_rhl {
grep -q "Red Hat Linux" $RELEASEFILE && ! grep -q "Advanced" $RELEASEFILE && echo $DISTNUM
}
function check_rhel {
grep -Eq "(Enterprise|Advanced|CentOS)" $RELEASEFILE && echo $DISTNUM
}
function check_fedora {
grep -q Fedora $RELEASEFILE && echo $DISTNUM
}
DISTNUM=`check_num`
DISTFC=`check_fedora`
DISTRHL=`check_rhl`
DISTRHEL=`check_rhel`
if [ -n "$DISTNUM" ]; then
if [ -n "$DISTFC" ]; then
DISTTYPE=fc
elif [ -n "$DISTRHEL" ]; then
DISTTYPE=el
elif [ -n "$DISTRHL" ]; then
DISTTYPE=rhl
fi
fi
[ -n "$DISTTYPE" -a -n "$DISTNUM" ] && DISTTAG=".${DISTTYPE}${DISTNUM}"
case "$1" in
--el) echo -n "$DISTRHEL" ;;
--fc) echo -n "$DISTFC" ;;
--rhl) echo -n "$DISTRHL" ;;
--distnum) echo -n "$DISTNUM" ;;
--disttype) echo -n "$DISTTYPE" ;;
--help)
printf "Usage: $0 [OPTIONS]\n"
printf " Default mode is --dist. Possible options:\n"
printf " --el\t\tfor RHEL version (if RHEL)\n"
printf " --fc\t\tfor Fedora version (if Fedora)\n"
printf " --rhl\t\tfor RHL version (if RHL)\n"
printf " --dist\t\tfor distribution tag\n"
printf " --distnum\tfor distribution number (major)\n"
printf " --disttype\tfor distribution type\n" ;;
*) echo -n "$DISTTAG" ;;
esac

@ -0,0 +1,50 @@
#!/bin/bash
# This script reads filenames from STDIN and outputs any relevant provides
# information that needs to be included in the package.
if [ "$1" ]
then
package_name="$1"
fi
filelist=`sed "s/['\"]/\\\&/g"`
[ -x /usr/lib/rpm/rpmdeps -a -n "$filelist" ] &&
echo $filelist | tr '[:blank:]' \\n | /usr/lib/rpm/rpmdeps --provides
#
# --- any other extra find-provides scripts
for i in /usr/lib/rpm/redhat/find-provides.d/*.prov
do
[ -x $i ] &&
(echo $filelist | tr '[:blank:]' \\n | $i | sort -u)
done
#
# --- Kernel module imported symbols
#
# Since we don't (yet) get passed the name of the package being built, we
# cheat a little here by looking first for a kernel, then for a kmod.
#
is_kmod=1
for f in $filelist; do
if [ $(echo "$f" | sed -r -ne 's:^.*/lib/modules/(.*)/(.*).ko$:\2:p') ]
then
is_kernel=1;
fi
if [ $(echo "$f" | sed -r -ne 's:^.*/boot/(.*):\1:p') ]
then
unset is_kmod;
fi
done
if [ ! "$is_kernel" ] || [ "$package_name" == "kernel" ]
then
unset is_kmod
fi
[ -x /usr/lib/rpm/redhat/find-provides.ksyms ] && [ "$is_kmod" ] &&
printf "%s\n" "${filelist[@]}" | /usr/lib/rpm/redhat/find-provides.ksyms
exit 0

@ -0,0 +1,39 @@
#!/bin/bash
#
# Auto-generate requirements for executables (both ELF and a.out) and library
# sonames, script interpreters, and perl modules.
#
ulimit -c 0
filelist=`sed "s/[]['\"*?{}]/\\\\\&/g"`
[ -x /usr/lib/rpm/rpmdeps -a -n "$filelist" ] && \
echo $filelist | tr '[:blank:]' \\n | /usr/lib/rpm/rpmdeps --requires
#
# --- Kernel module imported symbols
#
# Since we don't (yet) get passed the name of the package being built, we
# cheat a little here by looking first for a kernel, then for a kmod.
#
unset is_kmod
for f in $filelist; do
if [ $(echo "$f" | sed -r -ne 's:^.*/lib/modules/(.*)/(.*).ko$:\2:p') ]
then
is_kmod=1;
elif [ $(echo "$f" | sed -r -ne 's:^.*/boot/(.*):\1:p') ]
then
unset is_kmod;
break;
fi
done
# Disabling for now while the Fedora kernel doesn't produce kABI deps.
#[ -x /usr/lib/rpm/redhat/find-requires.ksyms ] && [ "$is_kmod" ] &&
# printf "%s\n" "${filelist[@]}" | /usr/lib/rpm/redhat/find-requires.ksyms
exit 0

@ -0,0 +1,111 @@
#!/bin/bash
# Copyright 2018 B. Persson, Bjorn@Rombobeorn.se
#
# This material is provided as is, with absolutely no warranty expressed
# or implied. Any use is at your own risk.
#
# Permission is hereby granted to use or copy this program
# for any purpose, provided the above notices are retained on all copies.
# Permission to modify the code and to distribute modified code is granted,
# provided the above notices are retained, and a notice that the code was
# modified is included with the above copyright notice.
function print_help {
cat <<'EOF'
Usage: gpgverify --keyring=<pathname> --signature=<pathname> --data=<pathname>
gpgverify is a wrapper around gpgv designed for easy and safe scripting. It
verifies a file against a detached OpenPGP signature and a keyring. The keyring
shall contain all the keys that are trusted to certify the authenticity of the
file, and must not contain any untrusted keys.
The differences, compared to invoking gpgv directly, are that gpgverify accepts
the keyring in either ASCII-armored or unarmored form, and that it will not
accidentally use a default keyring in addition to the specified one.
Parameters:
--keyring=<pathname> keyring with all the trusted keys and no others
--signature=<pathname> detached signature to verify
--data=<pathname> file to verify against the signature
EOF
}
fatal_error() {
message="$1" # an error message
status=$2 # a number to use as the exit code
echo "gpgverify: $message" >&2
exit $status
}
require_parameter() {
term="$1" # a term for a required parameter
value="$2" # Complain and terminate if this value is empty.
if test -z "${value}" ; then
fatal_error "No ${term} was provided." 2
fi
}
check_status() {
action="$1" # a string that describes the action that was attempted
status=$2 # the exit code of the command
if test $status -ne 0 ; then
fatal_error "$action failed." $status
fi
}
# Parse the command line.
keyring=
signature=
data=
for parameter in "$@" ; do
case "${parameter}" in
(--help)
print_help
exit
;;
(--keyring=*)
keyring="${parameter#*=}"
;;
(--signature=*)
signature="${parameter#*=}"
;;
(--data=*)
data="${parameter#*=}"
;;
(*)
fatal_error "Unknown parameter: \"${parameter}\"" 2
;;
esac
done
require_parameter 'keyring' "${keyring}"
require_parameter 'signature' "${signature}"
require_parameter 'data file' "${data}"
# Make a temporary working directory.
workdir="$(mktemp --directory)"
check_status 'Making a temporary directory' $?
workring="${workdir}/keyring.gpg"
# Decode any ASCII armor on the keyring. This is harmless if the keyring isn't
# ASCII-armored.
gpg2 --homedir="${workdir}" --yes --output="${workring}" --dearmor "${keyring}"
check_status 'Decoding the keyring' $?
# Verify the signature using the decoded keyring.
gpgv2 --homedir="${workdir}" --keyring="${workring}" "${signature}" "${data}"
check_status 'Signature verification' $?
# (--homedir isn't actually necessary. --dearmor processes only the input file,
# and if --keyring is used and contains a slash, then gpgv2 uses only that
# keyring. Thus neither command will look for a default keyring, but --homedir
# makes extra double sure that no default keyring will be touched in case
# another version of GPG works differently.)
# Clean up. (This is not done in case of an error that may need inspection.)
rm --recursive --force ${workdir}

@ -0,0 +1,5 @@
# Make libfoo.so symlinks require the soname-provide of the target library
%__libsymlink_requires %{_rpmconfigdir}/elfdeps --provides --soname-only
%__libsymlink_magic ^symbolic link to .*lib.*\.so\..*$
%__libsymlink_path ^.*\.so$
%__libsymlink_flags magic_and_path

@ -0,0 +1,479 @@
# Per-platform rpm configuration file.
#==============================================================================
# ---- per-platform macros.
#
%_vendor redhat
%_os linux
%_target_platform %{_target_cpu}-%{_vendor}-%{_target_os}%{?_gnu}
#==============================================================================
# ---- configure macros. note that most of these are inherited
# from the defaults.
#
%_localstatedir /var
%_runstatedir /run
%_pkgdocdir %{_docdir}/%{name}
%_docdir_fmt %%{NAME}
%_fmoddir %{_libdir}/gfortran/modules
%source_date_epoch_from_changelog 1
%clamp_mtime_to_source_date_epoch %source_date_epoch_from_changelog
%_enable_debug_packages 1
%_include_minidebuginfo 1
%_include_gdb_index 1
%_debugsource_packages 1
%_debuginfo_subpackages 1
# GCC toolchain
%__cc_gcc gcc
%__cxx_gcc g++
%__cpp_gcc gcc -E
# Clang toolchain
%__cc_clang clang
%__cxx_clang clang++
%__cpp_clang clang-cpp
# Default to the GCC toolchain
%toolchain gcc
%__cc %{expand:%%{__cc_%{toolchain}}}
%__cxx %{expand:%%{__cxx_%{toolchain}}}
%__cpp %{expand:%%{__cpp_%{toolchain}}}
# Compiler macros to use for invoking compilers in spec files for packages that
# want to use the default compiler and don't care which compiler that is.
%build_cc %{__cc}
%build_cxx %{__cxx}
%build_cpp %{__cpp}
#==============================================================================
# ---- compiler flags.
# C compiler flags. This is traditionally called CFLAGS in makefiles.
# Historically also available as %%{optflags}, and %%build sets the
# environment variable RPM_OPT_FLAGS to this value.
%build_cflags %{__build_flags_lang_c} %{?_distro_extra_cflags}
# C++ compiler flags. This is traditionally called CXXFLAGS in makefiles.
%build_cxxflags %{__build_flags_lang_cxx} %{?_distro_extra_cxxflags}
# Fortran compiler flags. Makefiles use both FFLAGS and FCFLAGS as
# the corresponding variable names.
%build_fflags %{__build_flags_common} -I%{_fmoddir} %{?_distro_extra_fflags}
# Vala compiler flags. This is used to set VALAFLAGS.
%build_valaflags -g
# When clang is used as a linker driver, it does not auto-detect the LTO
# bytecode and neither does bfd, so we need to explicitly pass the -flto
# flag when linking.
%_clang_extra_ldflags %{?_lto_cflags}
# Link editor flags. This is usually called LDFLAGS in makefiles.
# (Some makefiles use LFLAGS instead.) The default value assumes that
# the flags, while intended for ld, are still passed through the gcc
# compiler driver. At the beginning of %%build, the environment
# variable RPM_LD_FLAGS to this value.
%build_ldflags -Wl,-z,relro %{_ld_as_needed_flags} %{_ld_symbols_flags} %{_ld_pack_relocs_flags} %{_hardened_ldflags} %{_annotation_ldflags} %[ "%{toolchain}" == "clang" ? "%{?_clang_extra_ldflags}" : "" ] %{_build_id_flags} %{?_package_note_flags} %{?_distro_extra_ldflags}
# Expands to shell code to set the compiler/linker environment
# variables CFLAGS, CXXFLAGS, FFLAGS, FCFLAGS, VALAFLAGS, LDFLAGS if they
# have not been set already. RPM_OPT_FLAGS and RPM_LD_FLAGS have already
# been set implicitly at the start of the %%build section.
# LT_SYS_LIBRARY_PATH is used by libtool script.
# RUSTFLAGS is only set when %%{build_rustflags} is available.
%set_build_flags \
CFLAGS="${CFLAGS:-%{build_cflags}}" ; export CFLAGS ; \
CXXFLAGS="${CXXFLAGS:-%{build_cxxflags}}" ; export CXXFLAGS ; \
FFLAGS="${FFLAGS:-%{build_fflags}}" ; export FFLAGS ; \
FCFLAGS="${FCFLAGS:-%{build_fflags}}" ; export FCFLAGS ; \
VALAFLAGS="${VALAFLAGS:-%{build_valaflags}}" ; export VALAFLAGS ;%{?build_rustflags:
RUSTFLAGS="${RUSTFLAGS:-%{build_rustflags}}" ; export RUSTFLAGS ;} \
LDFLAGS="${LDFLAGS:-%{build_ldflags}}" ; export LDFLAGS ; \
LT_SYS_LIBRARY_PATH="${LT_SYS_LIBRARY_PATH:-%_libdir:}" ; export LT_SYS_LIBRARY_PATH ; \
CC="${CC:-%{__cc}}" ; export CC ; \
CXX="${CXX:-%{__cxx}}" ; export CXX
# Automatically use set_build_flags macro for build, check, and
# install phases.
# Use "%undefine _auto_set_build_flags" to disable"
%_auto_set_build_flags 1
%__spec_build_pre %{___build_pre} \
%{?_auto_set_build_flags:%{set_build_flags}} \
%{?_generate_package_note_file}
%__spec_check_pre %{___build_pre} \
%{?_auto_set_build_flags:%{set_build_flags}} \
%{?_generate_package_note_file}
# Internal-only. Do not use. Expand a variable and strip the flags
# not suitable to extension builders.
%__extension_strip_flags() %{lua:
--the only argument to this macro is the "name" of the flags we strip (e.g. cflags, ldflags, etc.)
local name = rpm.expand("%{1}")
--store all the individual flags in a variable as a continuous string
local flags = rpm.expand("%{build_" .. name .. "}")
--create an empty table for the minimal set of flags we wanna preserve
local stripped_flags = { }
--iterate over the individual flags and store the ones we want in the table as unique keys
for flag in flags:gmatch("%S+") do
if flag:find("^%-fexceptions") or flag:find("^%-fcf%-protection") then
stripped_flags[flag] = true end
end
--print out the finalized set of flags for use by the extension builders
for k,_ in pairs(stripped_flags) do print(k .. " ") end
}
# Variants of CFLAGS, CXXFLAGS, FFLAGS, LDFLAGS for use within
# extension builders.
%extension_cflags %{__extension_strip_flags cflags}
%extension_cxxflags %{__extension_strip_flags cxxflags}
%extension_fflags %{__extension_strip_flags fflags}
%extension_ldflags %{__extension_strip_flags ldflags}
# Deprecated names. For backwards compatibility only.
%__global_cflags %{build_cflags}
%__global_cxxflags %{build_cxxflags}
%__global_fflags %{build_fflags}
%__global_fcflags %{build_fflags}
%__global_ldflags %{build_ldflags}
# Architecture-specific support. Internal. Do not use directly.
%__cflags_arch_x86_64_level %[0%{?rhel} == 9 ? "-v2" : ""]%[0%{?rhel} > 9 ? "-v3" : ""]
%__cflags_arch_x86_64 -march=x86-64%{?__cflags_arch_x86_64_level:%{__cflags_arch_x86_64_level}}
# -mtls-dialect=gnu2 is currently specific to GCC (#2263181).
%__cflags_arch_x86_64_common -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection %[ "%{toolchain}" == "gcc" ? "-mtls-dialect=gnu2 " : "" ]%{_frame_pointers_cflags} %{_frame_pointers_cflags_x86_64}
# Also used for s390.
%__cflags_arch_s390x %[0%{?rhel} >= 9 ? "-march=z14 -mtune=z15" : "-march=z13 -mtune=z14"]
%__cflags_arch_ppc64le %[0%{?rhel} >= 9 ? "-mcpu=power9 -mtune=power9" : "-mcpu=power8 -mtune=power8"]
#==============================================================================
# ---- configure and makeinstall.
#
%_configure_gnuconfig_hack 1
%_configure_libtool_hardening_hack 1
# If defined, _configure_disable_silent_rules will cause --disable-silent-rules
# to be added to the list of options passed to the configure script.
# Eventually we'll want to turn this on by default, but this gives packagers a
# way to turn it back off.
# %_configure_disable_silent_rules 1
# Pass --runstatedir to configure.
%_configure_use_runstatedir 1
# This fixes various easy resolved configure tests that are compromised by LTO.
#
# We use this within the standard %configure macro, but also make it available
# for packages which don't use %configure
#
# The first three are common ways to test for the existence of a function, so
# we ensure the reference to the function is preserved
#
# The fourth are constants used to then try to generate NaNs and other key
# floating point numbers. We then use those special FP numbers to try and
# raise a SIGFPE. By declaring x & y volatile we prevent the optimizers
# from removing the computation
#
# The fifth (and worst) addresses problems with autoconf/libtool's approach
# to extracting symbols from .o files and generating C code. In an LTO world
# types matter much more closely and you can't have an object in one context
# that is a function definition and a simple scalar variable in another.
# Thankfully HP-UX has always had that restriction and is supported by
# autoconf/libtool. The insane sed script replaces the "generic" code with
# the HP-UX version.
#
# If we do not make changes, we put the original file back. This avoids
# unnecessary rebuilds of things that may have dependencies on the configure
# files.
#
%_fix_broken_configure_for_lto \
for file in $(find . -type f -name configure -print); do \
%{__sed} -r --in-place=.backup 's/^char \\(\\*f\\) \\(\\) = /__attribute__ ((used)) char (*f) () = /g' $file; \
diff -u $file.backup $file && mv $file.backup $file \
%{__sed} -r --in-place=.backup 's/^char \\(\\*f\\) \\(\\);/__attribute__ ((used)) char (*f) ();/g' $file; \
diff -u $file.backup $file && mv $file.backup $file \
%{__sed} -r --in-place=.backup 's/^char \\$2 \\(\\);/__attribute__ ((used)) char \\$2 ();/g' $file; \
diff -u $file.backup $file && mv $file.backup $file \
%{__sed} --in-place=.backup '1{$!N;$!N};$!N;s/int x = 1;\\nint y = 0;\\nint z;\\nint nan;/volatile int x = 1; volatile int y = 0; volatile int z, nan;/;P;D' $file; \
diff -u $file.backup $file && mv $file.backup $file \
%{__sed} --in-place=.backup 's#^lt_cv_sys_global_symbol_to_cdecl=.*#lt_cv_sys_global_symbol_to_cdecl="sed -n -e '"'"'s/^T .* \\\\(.*\\\\)$/extern int \\\\1();/p'"'"' -e '"'"'s/^$symcode* .* \\\\(.*\\\\)$/extern char \\\\1;/p'"'"'"#' $file; \
diff -u $file.backup $file && mv $file.backup $file \
done
%configure \
%{set_build_flags}; \
[ "%{_lto_cflags}"x != x ] && %{_fix_broken_configure_for_lto}; \
[ "%_configure_gnuconfig_hack" = 1 ] && for i in $(find $(dirname %{_configure}) -name config.guess -o -name config.sub) ; do \
[ -f /usr/lib/rpm/redhat/$(basename $i) ] && %{__rm} -f $i && %{__cp} -fv /usr/lib/rpm/redhat/$(basename $i) $i ; \
done ; \
[ "%_configure_libtool_hardening_hack" = 1 ] && [ x != "x%{_hardened_ldflags}" ] && \
for i in $(find . -name ltmain.sh) ; do \
%{__sed} -i.backup -e 's~compiler_flags=$~compiler_flags="%{_hardened_ldflags}"~' $i \
done ; \
%{_configure} --build=%{_build} --host=%{_host} \\\
--program-prefix=%{?_program_prefix} \\\
--disable-dependency-tracking \\\
%{?_configure_disable_silent_rules:--disable-silent-rules} \\\
--prefix=%{_prefix} \\\
--exec-prefix=%{_exec_prefix} \\\
--bindir=%{_bindir} \\\
--sbindir=%{_sbindir} \\\
--sysconfdir=%{_sysconfdir} \\\
--datadir=%{_datadir} \\\
--includedir=%{_includedir} \\\
--libdir=%{_libdir} \\\
--libexecdir=%{_libexecdir} \\\
--localstatedir=%{_localstatedir} \\\
%{?_configure_use_runstatedir:$(grep -q "runstatedir=DIR" %{_configure} && echo '--runstatedir=%{_runstatedir}')} \\\
--sharedstatedir=%{_sharedstatedir} \\\
--mandir=%{_mandir} \\\
--infodir=%{_infodir}
#==============================================================================
# ---- Build policy macros.
#
#
#---------------------------------------------------------------------
# Expanded at beginning of %install scriptlet.
#
%__spec_install_pre %{___build_pre}\
[ "$RPM_BUILD_ROOT" != "/" ] && rm -rf "${RPM_BUILD_ROOT}"\
mkdir -p "`dirname "$RPM_BUILD_ROOT"`"\
mkdir "$RPM_BUILD_ROOT"\
%{?_auto_set_build_flags:%{set_build_flags}}\
%{nil}
#---------------------------------------------------------------------
# Expanded at end of %install scriptlet.
#
%__arch_install_post /usr/lib/rpm/check-buildroot
# Build root policy macros. Standard naming:
# convert all '-' in basename to '_', add two leading underscores.
%__brp_ldconfig /usr/lib/rpm/redhat/brp-ldconfig
%__brp_compress /usr/lib/rpm/brp-compress
%__brp_strip /usr/lib/rpm/brp-strip %{__strip}
%__brp_strip_lto /usr/lib/rpm/redhat/brp-strip-lto %{__strip}
%__brp_strip_comment_note /usr/lib/rpm/brp-strip-comment-note %{__strip} %{__objdump}
%__brp_strip_static_archive /usr/lib/rpm/brp-strip-static-archive %{__strip}
%__brp_check_rpaths /usr/lib/rpm/check-rpaths
# __brp_mangle_shebangs_exclude - shebangs to exclude
# __brp_mangle_shebangs_exclude_file - file from which to get shebangs to exclude
# __brp_mangle_shebangs_exclude_from - files to ignore
# __brp_mangle_shebangs_exclude_from_file - file from which to get files to ignore
%__brp_mangle_shebangs /usr/lib/rpm/redhat/brp-mangle-shebangs %{?__brp_mangle_shebangs_exclude:--shebangs "%{?__brp_mangle_shebangs_exclude}"} %{?__brp_mangle_shebangs_exclude_file:--shebangs-from "%{__brp_mangle_shebangs_exclude_file}"} %{?__brp_mangle_shebangs_exclude_from:--files "%{?__brp_mangle_shebangs_exclude_from}"} %{?__brp_mangle_shebangs_exclude_from_file:--files-from "%{__brp_mangle_shebangs_exclude_from_file}"}
%__brp_llvm_compile_lto_elf /usr/lib/rpm/redhat/brp-llvm-compile-lto-elf %{build_cflags} %{build_ldflags}
# note: %%__os_install_post_python is defined in python-srpm-macros and contains several policies
# redhat-rpm-config maintainers, don't remove it from %%__os_install_post unless coordinating the change with Python maintainers
# packagers, don't undefine the entire macro, see the individual macros in /usr/lib/rpm/macros.d/macros.python-srpm
%__os_install_post \
%{?__brp_ldconfig} \
%{?__brp_compress} \
%{!?__debug_package:\
%{?__brp_strip} \
%{?__brp_strip_comment_note} \
} \
%{?__brp_strip_lto} \
%{?__brp_strip_static_archive} \
%{?__brp_check_rpaths} \
%{?__brp_mangle_shebangs} \
%{?__brp_remove_la_files} \
%{__os_install_post_python} \
%{nil}
%__spec_install_post\
%[ "%{toolchain}" == "clang" ? "%{?__brp_llvm_compile_lto_elf}" : "%{nil}" ] \
%{?__debug_package:%{__debug_install_post}}\
%{__arch_install_post}\
%{__os_install_post}\
%{nil}
%install %{?_enable_debug_packages:%{?buildsubdir:%{debug_package}}}\
%%install\
%{nil}
#
# Should missing buildids terminate a build?
%_missing_build_ids_terminate_build 1
# Use SHA-256 for FILEDIGESTS instead of default MD5
%_source_filedigest_algorithm 8
%_binary_filedigest_algorithm 8
# Use Zstandard compression for binary payloads
%_binary_payload w19.zstdio
#==============================================================================
# --- Compiler flags control.
#
# Please consult buildflags.md for parts that can be configured
# from RPM spec files.
%_hardening_gcc_cflags -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1
%_hardening_clang_cflags --config=/usr/lib/rpm/redhat/redhat-hardened-clang.cfg
%_hardening_cflags %{expand:%%{_hardening_%{toolchain}_cflags}} -fstack-protector-strong
# Have the linker generate errors instead of warnings for binaries that
# contain memory regions with both write and execute permissions.
# https://fedoraproject.org/wiki/Changes/Linker_Error_On_Security_Issues
%_hardening_linker_errors %[ "%{toolchain}" == "gcc" ? "-specs=/usr/lib/rpm/redhat/redhat-hardened-ld-errors" : "" ]
%_hardened_linker_errors 1
# we don't escape symbols '~', '"', etc. so be careful when changing this
%_hardening_gcc_ldflags -specs=/usr/lib/rpm/redhat/redhat-hardened-ld
%_hardening_clang_ldflags --config=/usr/lib/rpm/redhat/redhat-hardened-clang-ld.cfg
%_hardening_ldflags -Wl,-z,now %{expand:%%{_hardening_%{toolchain}_ldflags}}
# Harden packages by default for Fedora 23+:
# https://fedorahosted.org/fesco/ticket/1384 (accepted on 2014-02-11)
# Use "%undefine _hardened_build" to disable.
%_hardened_build 1
%_hardened_cflags %{?_hardened_build:%{_hardening_cflags}}
%_hardened_ldflags %{?_hardened_build:%{_hardening_ldflags}}
# Add extra information to binary objects created by the compiler:
# https://pagure.io/fesco/issue/1780 (accepted on 2017-10-30)
# ...except on armv7hl, which has an issue whose root-cause isn't
# clear yet: https://bugzilla.redhat.com/show_bug.cgi?id=1951492
# Use "%undefine _annotated_build" to disable.
%_annotated_build 1
%_annobin_gcc_plugin -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1
# The annobin plugin is not built for clang yet
%_annobin_clang_plugin %dnl-fplugin=/usr/lib64/clang/`clang -dumpversion`/lib/annobin.so
%_annotation_plugin %{?_annotated_build:%{expand:%%{_annobin_%{toolchain}_plugin}}}
%_annotation_cflags %[ "%{_target_cpu}" == "armv7hl" ? "" : "%{_annotation_plugin}" ]
%_annotation_ldflags %{?_lto_cflags:%{_annotation_cflags}}
# Use the remove-section option to force the find-debuginfo script
# to move the annobin notes into the separate debuginfo file.
%_find_debuginfo_extra_opts %{?_annotated_build:--remove-section .gnu.build.attributes}
# Include frame pointer information by default, except on RHEL 10 and earlier
# On RHEL 11, we are enabling it for now, with the possibility of revoking it
# at a later date.
# https://fedoraproject.org/wiki/Changes/fno-omit-frame-pointer
# Use "%undefine _include_frame_pointers" to disable.
%_include_frame_pointers %{undefined rhel} || 0%{?rhel} >= 11
%_frame_pointers_cflags %{expr:0%{?_include_frame_pointers} ? "-fno-omit-frame-pointer" : ""}
%_frame_pointers_cflags_x86_64 %{expr:0%{?_include_frame_pointers} ? "-mno-omit-leaf-frame-pointer" : ""}
%_frame_pointers_cflags_aarch64 %{expr:0%{?_include_frame_pointers} ? "-mno-omit-leaf-frame-pointer" : ""}
%_frame_pointers_cflags_s390x %{expr:0%{?_include_frame_pointers} ? "-mbackchain" : ""}
# Fail linking if there are undefined symbols. Required for proper
# ELF symbol versioning support. Disabled by default.
# Use "%define _ld_strict_symbol_defs 1" to enable.
#%_ld_strict_symbol_defs 1
%_ld_symbols_flags %{?_ld_strict_symbol_defs:-Wl,-z,defs}
# https://fedoraproject.org/wiki/Changes/RemoveExcessiveLinking
# use "%undefine _ld_as_needed" to disable.
%_ld_as_needed 1
%_ld_as_needed_flags %{?_ld_as_needed:-Wl,--as-needed}
# aarch64 and s390x currently do not support packed relocations.
%_ld_pack_relocs %[ "%{_arch}" == "x86_64" || "%{_arch}" == "i386" || "%{_arch}" == "ppc64le" || "%{_arch}" == "aarch64" ]
%_ld_pack_relocs_flags %[0%{?_ld_pack_relocs} ? "-Wl,-z,pack-relative-relocs" : ""]
# LTO is the default in Fedora.
# "%define _lto_cflags %{nil}" to opt out
#
# We currently have -ffat-lto-objects turned on out of an abundance of
# caution. To remove it we need to do a check of the installed .o/.a files
# to verify they have real sections/symbols after LTO stripping. That
# way we can detect installing an unusable .o/.a file. This is on the TODO
# list for F34.
%_gcc_lto_cflags -flto=auto -ffat-lto-objects
%_clang_lto_cflags -flto=thin
%_lto_cflags %{expand:%%{_%{toolchain}_lto_cflags}}
# Default fortification level.
# "%define _fortify_level 2" to downgrade and
# "%define _fortify_level 0" or "%undefine _fortify_level" to disable
#
# We use a single -Wp here to enforce order so that ccache does not ever
# reorder them.
%_fortify_level 3
%_fortify_level_flags %[ 0%{?_fortify_level} > 0 ? "-Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=%{_fortify_level}" : "" ]
# This can be set to a positive integer to obtain increasing type
# safety levels for C. See buildflags.md.
%build_type_safety_c 3
# Some linkers default to a build-id algorithm that is not supported by rpmbuild,
# so we need to specify the right algorithm to use.
%_build_id_flags -Wl,--build-id=sha1
%_general_options -O2 %{?_lto_cflags} -fexceptions -g -grecord-gcc-switches -pipe
%_warning_options -Wall%[%__build_for_lang_any && "%toolchain" == "gcc" ? " -Wno-complain-wrong-lang" : ""]%[%__build_for_lang_c + %__build_for_lang_cxx ? " -Werror=format-security" : ""]%[%__build_for_lang_c && (%build_type_safety_c == 0) ? " -fpermissive" : ""]%[%__build_for_lang_c && (%build_type_safety_c == 1) ? " -Wno-error=int-conversion" : ""]%[%__build_for_lang_c && (%build_type_safety_c > 0 && %build_type_safety_c < 3) ? " -Wno-error=incompatible-pointer-types" : ""]
%_preprocessor_defines %{_fortify_level_flags} -Wp,-D_GLIBCXX_ASSERTIONS
# Common variables are no longer generated by default by gcc and clang
# If they are needed then add "%define _legacy_common_support 1" to the spec file.
%_legacy_options %{?_legacy_common_support: -fcommon}
%__global_compiler_flags %{_general_options} %{_warning_options} %{_preprocessor_defines} %{_hardened_cflags} %{_annotation_cflags} %{_legacy_options}
# Internal macros. Do not use directly. These variables can be rebound
# to suppress certain frontend-specific compiler flags (or in the case
# of __build_for_lang_any, frontend-agnostic flags). Dynamic scoping
# and shadowing redefinitions are used for the __build_for_* variables
# to remain largely compatible with existing spec files that have
# hard-coded assumptions which macros assume which other macros.
# The __build_flags_no_macro_warning construct suppresses a warning
# about unused RPM macros.
%__build_for_lang_c 1
%__build_for_lang_cxx 1
%__build_for_lang_any 1
%__build_flags_no_macro_warning %[%__build_for_lang_c + %__build_for_lang_cxx + %__build_for_lang_any ? "" : ""]
%__build_flags_common() %{expand:%define __build_for_lang_c 0}%{expand:%define __build_for_lang_cxx 0}%{expand:%define __build_for_lang_any 0}%{__build_flags_no_macro_warning}%{optflags}
%__build_flags_lang_c() %{expand:%define __build_for_lang_cxx 0}%{expand:%define __build_for_lang_any 0}%{__build_flags_no_macro_warning}%{optflags}
%__build_flags_lang_cxx() %{expand:%define __build_for_lang_c 0}%{expand:%define __build_for_lang_any 0}%{__build_flags_no_macro_warning}%{optflags}
# Automatically trim changelog entries after 2 years
%_changelog_trimage %{expr:2*365*24*60*60}
#==============================================================================
# ---- Generic auto req/prov filtering macros
#
# http://fedoraproject.org/wiki/PackagingDrafts/AutoProvidesAndRequiresFiltering
# prevent anything matching from being scanned for provides
%filter_provides_in(P) %{expand: \
%global __filter_prov_cmd %{?__filter_prov_cmd} %{__grep} -v %{-P} '%*' | \
}
# prevent anything matching from being scanned for requires
%filter_requires_in(P) %{expand: \
%global __filter_req_cmd %{?__filter_req_cmd} %{__grep} -v %{-P} '%*' | \
}
# filter anything matching out of the provides stream
%filter_from_provides() %{expand: \
%global __filter_from_prov %{?__filter_from_prov} | %{__sed} -e '%*' \
}
# filter anything matching out of the requires stream
%filter_from_requires() %{expand: \
%global __filter_from_req %{?__filter_from_req} | %{__sed} -e '%*' \
}
# actually set up the filtering bits
%filter_setup %{expand: \
%global _use_internal_dependency_generator 0 \
%global __deploop() while read FILE; do echo "${FILE}" | /usr/lib/rpm/rpmdeps -%{1}; done | /bin/sort -u \
%global __find_provides /bin/sh -c "%{?__filter_prov_cmd} %{__deploop P} %{?__filter_from_prov}" \
%global __find_requires /bin/sh -c "%{?__filter_req_cmd} %{__deploop R} %{?__filter_from_req}" \
}

@ -0,0 +1,103 @@
# Macros to constrain resource use during the build process
# Changes _smp_build_ncpus depending on various factors
#
# -c cpus constrains the CPU count to "cpus"
# -m mem constrains the CPU count to the total amount of memory in the system
# (in megabytes) divided by "mem", rounded down
#
# If no options are passed, sets _smp_build_ncpus to 1.
# _smp_build_ncpus will never be raised, only lowered.
%constrain_build(c:m:) %{lua:
-- Check a value and clamp it to at least 1
local function check_and_clamp(v, string)
if v == nil then return nil end
i = math.tointeger(v)
if i == nil then
macros.error({"%%%0: invalid "..string.." value "..v})
return nil
end
local clamp = math.max(1, math.floor(i))
if i ~= clamp then
macros.error({"%%%0: invalid "..string.." value "..v})
return nil
end
return clamp
end
-- Parse meminfo to find the total amount of memory in the system
local function getmem()
local mem = 0
for l in io.lines('/proc/meminfo') do
if l:sub(1, 9) == "MemTotal:" then
mem = math.tointeger(string.match(l, "MemTotal:%s+(%d+)"))
break
end
end
return mem
end
local mem_limit = check_and_clamp(opt.m, "mem limit")
local cpu_limit = check_and_clamp(opt.c, "cpu limit")
local current_cpus = math.tointeger(macros._smp_build_ncpus)
local constrained_cpus = current_cpus
if (not cpu_limit and not mem_limit) then
cpu_limit = 1
end
if cpu_limit ~= nil then
constrained_cpus = math.min(cpu_limit, constrained_cpus)
end
if mem_limit ~= nil then
local mem_total = getmem(verbose)
local limit = math.max(1, mem_total // (mem_limit * 1024))
constrained_cpus = math.min(constrained_cpus, limit)
end
macros._smp_build_ncpus = constrained_cpus
}
# outputs build flag overrides to be used in conjunction with
# %%make_build, %%cmake_build etc.
#
# if no override is needed, this macro outputs nothing
#
# - m memory limit in MBs per core; default is 1024
#
# Usage:
# e.g. %make_build %{limit_build -m 2048}
# => /usr/bin/make -O -j16 V=1 VERBOSE=1
# %make_build %{limit_build -m 40960}
# => /usr/bin/make -O -j16 V=1 VERBOSE=1 -j1
#
%limit_build(m:) %{lua:
local mem_per_process=rpm.expand("%{-m*}")
if mem_per_process == "" then
mem_per_process = 1024
else
mem_per_process = tonumber(mem_per_process)
end
local mem_total = 0
for line in io.lines('/proc/meminfo') do
if line:sub(1, 9) == "MemTotal:" then
local tokens = {}
for token in line:gmatch("%w+") do
tokens[#tokens + 1] = token
end
mem_total = tonumber(tokens[2])
break
end
end
local max_jobs = mem_total // (mem_per_process * 1024)
if max_jobs < 1 then
max_jobs = 1
end
cur_max_jobs=tonumber(rpm.expand("%{_smp_build_ncpus}"))
if cur_max_jobs > max_jobs then
print("-j" .. max_jobs)
end
}

@ -0,0 +1,39 @@
# Macros for reducing debug info size using dwz(1) utility.
# The two default values below should result in dwz taking at most
# 3GB of RAM or so on 64-bit hosts and 2.5GB on 32-bit hosts
# on the largest *.debug files (in mid 2012 those are
# libreoffice-debuginfo, debuginfos containing
# libxul.so.debug and libwebkitgtk-*.so.*.debug).
# This needs to be tuned based on the amount of available RAM
# on build boxes for each architecture as well as virtual address
# space limitations if dwz is 32-bit program. While it needs less
# memory than 64-bit program because pointers are smaller, it can
# never have more than 4GB-epsilon of RAM and on some architecture
# even less than that (e.g. 2GB).
# Number of debugging information entries (DIEs) above which
# dwz will stop considering file for multifile optimizations
# and enter a low memory mode, in which it will optimize
# in about half the memory needed otherwise.
%_dwz_low_mem_die_limit 10000000
# Number of DIEs above which dwz will stop processing
# a file altogether.
%_dwz_max_die_limit 50000000
# On x86_64 increase the higher limit to make libwebkit* optimizable.
# libwebkit* in mid 2012 contains roughly 87mil DIEs, and 64-bit
# dwz is able to optimize it from ~1.1GB to ~410MB using 5.2GB of RAM.
%_dwz_max_die_limit_x86_64 110000000
# On ARM, build boxes often have only 512MB of RAM and are very slow.
# Lower both the limits.
%_dwz_low_mem_die_limit_armv5tel 4000000
%_dwz_low_mem_die_limit_armv7hl 4000000
%_dwz_max_die_limit_armv5tel 10000000
%_dwz_max_die_limit_armv7hl 10000000
%_dwz_limit() %{expand:%%{?%{1}_%{_arch}}%%{!?%{1}_%{_arch}:%%%{1}}}
%_find_debuginfo_dwz_opts --run-dwz\\\
--dwz-low-mem-die-limit %{_dwz_limit _dwz_low_mem_die_limit}\\\
--dwz-max-die-limit %{_dwz_limit _dwz_max_die_limit}

@ -0,0 +1,63 @@
# Fedora macros, safe to use after the SRPM build stage
# Lists files matching inclusion globs, excluding files matching exclusion
# globs
#  globs are space-separated lists of shell globs. Such lists require
# %{quote:} use when passed as rpm arguments or flags.
# Control variables, flags and arguments:
# %{listfiles_include} inclusion globs
# %{listfiles_exclude} exclusion globs
# -i <globs> inclusion globs
# -x <globs> exclusion globs
# … arguments passed to the macro without flags will be
# interpreted as inclusion globs
%listfiles(i:x:) %{expand:
%if %{lua: print(string.len(rpm.expand("%{?-i*}%{?listfiles_include}%*")))}
listfiles_include=$(realpath -e --relative-base=. %{?-i*} %{?listfiles_include} %* | sort -u)
%if %{lua: print(string.len(rpm.expand("%{?-x*}%{?listfiles_exclude}")))}
while IFS= read -r finc ; do
realpath -qe --relative-base=. %{?-x*} %{?listfiles_exclude} \\
| sort -u | grep -q "${finc}" || echo "${finc}"
done <<< "${listfiles_include}"
%else
echo "${listfiles_include}"
%endif
%endif
}
# https://github.com/rpm-software-management/rpm/issues/581
# Writes the contents of a list of rpm variables to a macro file
# Control variables, flags and arguments:
# -f <filename> the macro file to process:
#  it must contain corresponding anchors
# for example %writevars -f myfile foo bar will replace:
# @@FOO@@ with the rpm evaluation of %{foo} and
# @@BAR@@ with the rpm evaluation of %{bar}
# in myfile
%writevars(f:) %{lua:
local fedora = require "fedora.common"
local macrofile = rpm.expand("%{-f*}")
local rpmvars = {}
for i = 1, rpm.expand("%#") do
table.insert(rpmvars, rpm.expand("%" .. i))
end
fedora.writevars(macrofile,rpmvars)
}
# gpgverify verifies signed sources. There is documentation in the script.
%gpgverify(k:s:d:) %{lua:
local script = rpm.expand("%{_rpmconfigdir}/redhat/gpgverify ")
local keyring = rpm.expand("%{-k*}")
local signature = rpm.expand("%{-s*}")
local data = rpm.expand("%{-d*}")
print(script)
if keyring ~= "" then
print(rpm.expand("--keyring='%{SOURCE" .. keyring .. "}' "))
end
if signature ~= "" then
print(rpm.expand("--signature='%{SOURCE" .. signature .. "}' "))
end
if data ~= "" then
print(rpm.expand("--data='%{SOURCE" .. data .. "}' "))
end
}

@ -0,0 +1,43 @@
# Fedora macros, safe to use at SRPM build stage
# A directory for rpm macros
%rpmmacrodir /usr/lib/rpm/macros.d
# A directory for appdata metainfo. This has changed between releases so a
# macro is useful.
%_metainfodir %{_datadir}/metainfo
# A directory for SWID tag files describing the installation
%_swidtagdir %{_prefix}/lib/swidtag/fedoraproject.org
# Applies the fedora.wordwrap filter to the content of an rpm variable, and
# prints the result.
#  putting multiple lines of UTF-8 text inside a variable is usually
# accomplished with %{expand:some_text}
# Control variables, flags and arguments:
# -v <variable_name> (default value: _description)
%wordwrap(v:) %{lua:
local fedora = require "fedora.common"
local variable = "%{?" .. rpm.expand("%{-v*}%{!-v:_description}") .. "}"
print(fedora.wordwrap(variable))
}
# A single Name: and %package substitute
# Control variables, flags and arguments:
# %{source_name} the SRPM name
# %{source_summary} the SRPM summary
# %{source_description} the SRPM description
# -n <name> declare a package named <name>
# (%package-like behavior)
# -v be verbose
# %1 declare a package named %{source_name}-%{%1}
# (%package-like behavior)
%new_package(n:v) %{lua:
local fedora = require "fedora.common"
local pkg_name = fedora.readflag("n")
local verbose = fedora.hasflag("v")
local name_suffix = fedora.read("1")
local source_name = fedora.read("source_name")
local first = not ( fedora.read("name") or fedora.read("currentname") )
fedora.new_package(source_name, pkg_name, name_suffix, first, verbose)
}

@ -0,0 +1,2 @@
# Arches that GAP runs on
%gap_arches aarch64 ppc64le s390x x86_64

@ -0,0 +1,2 @@
# Arches that OpenJDK and dependent packages run on
%java_arches aarch64 ppc64le s390x x86_64

@ -0,0 +1,2 @@
# arches that ldc builds on
%ldc_arches %{ix86} x86_64 %{arm} aarch64

@ -0,0 +1,9 @@
#%ldconfig /sbin/ldconfig
%ldconfig_post(n:) %{?ldconfig:%post -p %ldconfig %{?*} %{-n:-n %{-n*}}\
%end}
%ldconfig_postun(n:) %{?ldconfig:%postun -p %ldconfig %{?*} %{-n:-n %{-n*}}\
%end}
%ldconfig_scriptlets(n:) %{?ldconfig:\
%ldconfig_post %{?*} %{-n:-n %{-n*}}\
%ldconfig_postun %{?*} %{-n:-n %{-n*}}\
}

@ -0,0 +1,5 @@
# arches that mono builds on
%mono_arches %{ix86} x86_64 sparc sparcv9 ia64 %{arm} aarch64 alpha s390x ppc ppc64 ppc64le
%_monodir %{_prefix}/lib/mono
%_monogacdir %{_monodir}/gac

@ -0,0 +1,7 @@
# nodejs_arches lists what arches Node.js and dependent packages run on.
#
# Enabling Node.js on other arches requires porting the V8 JavaScript JIT to
# those arches. Support for POWER and aarch64 arrived in nodejs v4. Support
# for s390x arrived in nodejs v6
%nodejs_arches %{ix86} x86_64 %{arm} aarch64 %{power64} s390x

@ -0,0 +1,16 @@
%autorelease(e:s:pb:n) %{?-p:0.}%{lua:
release_number = tonumber(rpm.expand("%{?_rpmautospec_release_number}%{!?_rpmautospec_release_number:1}"));
base_release_number = tonumber(rpm.expand("%{?-b*}%{!?-b:1}"));
print(release_number + base_release_number - 1);
}%{?-e:.%{-e*}}%{?-s:.%{-s*}}%{!?-n:%{?dist}}
%autochangelog %{lua:
locale = os.setlocale(nil)
os.setlocale("C.utf8")
date = os.date("%a %b %d %Y")
os.setlocale(locale)
packager = rpm.expand("%{?packager}%{!?packager:John Doe <packager@example.com>}")
evr = rpm.expand("%{?epoch:%{epoch}:}%{version}-%{release}")
print("* " .. date .. " " .. packager .. " - " .. evr .. "\\n")
print("- local build")
}

@ -0,0 +1,3 @@
%bash_completions_dir %{_datadir}/bash-completion/completions
%zsh_completions_dir %{_datadir}/zsh/site-functions
%fish_completions_dir %{_datadir}/fish/vendor_completions.d

@ -0,0 +1,3 @@
# valgrind_arches lists what arches Valgrind works on
%valgrind_arches %{ix86} x86_64 ppc ppc64 ppc64le s390x armv7hl aarch64

@ -0,0 +1,7 @@
# ---- VPATH default settings
# directory where CMakeLists.txt/meson.build/etc. are placed
%_vpath_srcdir .
# directory (doesn't need to exist) where all generated build files will be placed
%_vpath_builddir %{_vendor}-%{_target_os}-build

@ -0,0 +1,3 @@
*cc1_options:
+ %{!-fno-use-annobin:%{!iplugindir*:%:find-plugindir()} -fplugin=annobin}

@ -0,0 +1,199 @@
#!/usr/bin/sh
# This is a script to select which GCC spec file fragment
# should be the destination of the redhat-annobin-cc1 symlink.
# Author: Nick Clifton <nickc@redhat.com>
# Copyright (c) 2021 Red Hat.
#
# This is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 2, or (at your
# option) any later version.
# It is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# Usage:
# redhat-annobin-plugin-select [script-dir]
#
# If script-dir is not provided then /usr/lib/rpm/redhat is used
# as the location where all of the annobin plugin selection files
# can be found.
if test "x$1" = "x" ;
then
rrcdir=/usr/lib/rpm/redhat
else
rrcdir=$1
fi
# Set this variable to non-zero to enable the generation of debugging
# messages.
debug=0
# Decide which version of the annobin plugin for gcc should be used.
# There are two possible versions, one created by the annobin package and one
# created by the gcc package. The logic selects the gcc version unless both
# have been built by the same version of the compiler. In that case the
# annobin version is selected instead.
#
# The point of all this is that the annobin plugin is very sensitive to
# mismatches with the version of gcc that built it. If the plugin is built
# by version A of gcc, but then run on version B of gcc, it is possible for
# the plugin to misbehave, which then causes problems if gating tests examine
# the plugin's output. (This has happened more than once in RHEL...).
#
# So the plugin is built both by gcc and by the annobin package. This means
# that whenever gcc is updated a fresh plugin is built, and the logic below
# will select that version. But in order to allow annobin development to
# proceed independtently of gcc, the annobin package can also update its
# version of the plugin, and the logic will select this new version.
# This is where the annobin package stores the information on the version
# of gcc that built the annobin plugin.
aver=`gcc --print-file-name=plugin`/annobin-plugin-version-info
# This is where the gcc package stores its version information.
gver=`gcc --print-file-name=rpmver`
aplugin=`gcc --print-file-name=plugin`/annobin.so.0.0.0
gplugin=`gcc --print-file-name=plugin`/gcc-annobin.so.0.0.0
# This is the file that needs to be updated when either of those version
# files changes.
rac1=redhat-annobin-cc1
# This is the GCC spec file fragment that selects the gcc-built version of
# the annobin plugin
select_gcc=redhat-annobin-select-gcc-built-plugin
# This is the GCC spec file fragment that selects the annobin-built version
# of the annobin plugin
select_annobin=redhat-annobin-select-annobin-built-plugin
install_annobin_version=0
install_gcc_version=0
if [ -f $aplugin ]
then
if [ -f $gplugin ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Both plugins exist, checking version information"
fi
if [ -f $gver ]
then
if [ -f $aver ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Both plugin version files exist - comparing..."
fi
# Get the first line from the version info files. This is just in
# vase there are extra lines in the files.
avers=`head --lines=1 $aver`
gvers=`head --lines=1 $gver`
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Annobin plugin built by gcc $avers"
echo " redhat-rpm-config: GCC plugin built by gcc $gvers"
fi
# If both plugins were built by the same version of gcc then select
# the one from the annobin package (in case it is built from newer
# sources). If the plugin builder versions differ, select the gcc
# built version instead. This assumes that the gcc built version
# always matches the installed gcc, which should be true.
if [ $avers = $gvers ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Both plugins built by the same compiler - using annobin-built plugin"
fi
install_annobin_version=1
else
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Versions differ - using gcc-built plugin"
fi
install_gcc_version=1
fi
else
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Annobin version file does not exist, using gcc-built plugin"
fi
install_gcc_version=1
fi
else
if [ -f $aver ]
then
# FIXME: This is suspicious. If the installed GCC does not supports plugins
# then enabling the annobin plugin will not work.
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: GCC plugin version file does not exist, using annobin-built plugin"
fi
install_annobin_version=1
else
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Neither version file exists - playing safe and using gcc-built plugin"
echo " redhat-rpm-config: Note: expected to find $aver and/or $gver"
fi
install_gcc_version=1
fi
fi
else
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Only the annobin plugin exists - using that"
fi
install_annobin_version=1
fi
else
if [ -f $gplugin ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Only the gcc plugin exists - using that"
fi
else
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Neither plugin exists - playing safe and using gcc-built plugin"
echo " redhat-rpm-config: Note: expected to find $aplugin and/or $gplugin"
fi
fi
install_gcc_version=1
fi
if [ $install_annobin_version -eq 1 ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Installing annobin version of $rac1"
fi
pushd $rrcdir > /dev/null
rm -f $rac1
ln -s $select_annobin "$rac1"
popd > /dev/null
else if [ $install_gcc_version -eq 1 ]
then
if [ $debug -eq 1 ]
then
echo " redhat-rpm-config: Installing gcc version of $rac1"
fi
pushd $rrcdir > /dev/null
rm -f $rac1
ln -s $select_gcc $rac1
popd > /dev/null
fi
fi

@ -0,0 +1,3 @@
*cc1_options:
+ %{!-fno-use-annobin:%{!iplugindir*:%:find-plugindir()} -fplugin=annobin}

@ -0,0 +1,3 @@
*cc1_options:
+ %{!-fno-use-annobin:%{!iplugindir*:%:find-plugindir()} -fplugin=gcc-annobin}

@ -0,0 +1,5 @@
*cc1_options:
+ %{!r:%{!fpie:%{!fPIE:%{!fpic:%{!fPIC:%{!fno-pic:-fPIE}}}}}}
*cpp_options:
+ %{!r:%{!fpie:%{!fPIE:%{!fpic:%{!fPIC:%{!fno-pic:-fPIE}}}}}}

@ -0,0 +1,2 @@
*self_spec:
+ %{!static:%{!shared:%{!r:-pie}}}

@ -0,0 +1,2 @@
*self_spec:
+ %{!fuse-ld*:%{!r:-Wl,--error-rwx-segments -Wl,--error-execstack}}

@ -0,0 +1,31 @@
include: /usr/lib/rpm/rpmrc
optflags: i386 %{__global_compiler_flags} -m32 -march=i386 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection
optflags: i486 %{__global_compiler_flags} -m32 -march=i486 -fasynchronous-unwind-tables -fstack-clash-protection
optflags: i586 %{__global_compiler_flags} -m32 -march=i586 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection
optflags: i686 %{__global_compiler_flags} -m32 -march=i686 -mtune=generic -msse2 -mfpmath=sse -mstackrealign -fasynchronous-unwind-tables -fstack-clash-protection
optflags: athlon %{__global_compiler_flags} -m32 -march=athlon -fasynchronous-unwind-tables -fstack-clash-protection
optflags: x86_64 %{__global_compiler_flags} -m64 %{__cflags_arch_x86_64} %__cflags_arch_x86_64_common
optflags: x86_64_v2 %{__global_compiler_flags} -m64 -march=x86-64-v2 %__cflags_arch_x86_64_common
optflags: x86_64_v3 %{__global_compiler_flags} -m64 -march=x86-64-v3 %__cflags_arch_x86_64_common
optflags: x86_64_v4 %{__global_compiler_flags} -m64 -march=x86-64-v4 %__cflags_arch_x86_64_common
optflags: ppc64le %{__global_compiler_flags} -m64 %{__cflags_arch_ppc64le} -fasynchronous-unwind-tables -fstack-clash-protection
optflags: s390x %{__global_compiler_flags} -m64 %{__cflags_arch_s390x} -fasynchronous-unwind-tables -fstack-clash-protection
optflags: aarch64 %{__global_compiler_flags} -mbranch-protection=standard -fasynchronous-unwind-tables %[ "%{toolchain}" == "gcc" ? "-fstack-clash-protection" : "" ] %{_frame_pointers_cflags} %{_frame_pointers_cflags_aarch64}
optflags: riscv64 %{__global_compiler_flags} -fasynchronous-unwind-tables %{_frame_pointers_cflags}
# set build arch to fedora buildarches on hardware capable of running it
# saves having to do rpmbuild --target=
buildarchtranslate: athlon: i686
buildarchtranslate: geode: i686
buildarchtranslate: pentium4: i686
buildarchtranslate: pentium3: i686
buildarchtranslate: i686: i686
buildarchtranslate: i586: i586
buildarchtranslate: armv7hl: armv7hl
buildarchtranslate: armv7hnl: armv7hl

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save