You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qt5-qtwebengine/qtwebengine-everywhere-src-...

30526 lines
1.0 MiB

diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webengine/customdialogs/customdialogs.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/customdialogs/customdialogs.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webengine/customdialogs/customdialogs.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/customdialogs/customdialogs.pro 2017-12-25 12:48:31.714986364 +0100
@@ -1,5 +1,7 @@
QT += webengine
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
server.h
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webengine/minimal/minimal.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/minimal/minimal.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webengine/minimal/minimal.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/minimal/minimal.pro 2017-12-25 12:48:31.752985827 +0100
@@ -2,6 +2,8 @@
QT += webengine
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
SOURCES += main.cpp
RESOURCES += qml.qrc
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webengine/quicknanobrowser/quicknanobrowser.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/quicknanobrowser/quicknanobrowser.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webengine/quicknanobrowser/quicknanobrowser.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/quicknanobrowser/quicknanobrowser.pro 2017-12-25 12:48:31.815984938 +0100
@@ -20,5 +20,7 @@
QT += widgets # QApplication is required to get native styling with QtQuickControls
}
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
target.path = $$[QT_INSTALL_EXAMPLES]/webengine/quicknanobrowser
INSTALLS += target
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webengine/recipebrowser/recipebrowser.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/recipebrowser/recipebrowser.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webengine/recipebrowser/recipebrowser.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webengine/recipebrowser/recipebrowser.pro 2017-12-25 12:48:31.937983215 +0100
@@ -2,6 +2,8 @@
QT += quick qml quickcontrols2 webengine
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
cross_compile {
posix|qnx|linux: DEFINES += QTWEBENGINE_RECIPE_BROWSER_EMBEDDED
}
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/contentmanipulation/contentmanipulation.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/contentmanipulation/contentmanipulation.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/contentmanipulation/contentmanipulation.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/contentmanipulation/contentmanipulation.pro 2017-12-25 12:48:31.938983201 +0100
@@ -1,5 +1,7 @@
QT += webenginewidgets
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS = mainwindow.h
SOURCES = main.cpp \
mainwindow.cpp
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/cookiebrowser/cookiebrowser.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/cookiebrowser/cookiebrowser.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/cookiebrowser/cookiebrowser.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/cookiebrowser/cookiebrowser.pro 2017-12-25 12:48:32.492975378 +0100
@@ -3,6 +3,8 @@
TEMPLATE = app
CONFIG += c++11
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
SOURCES += \
main.cpp\
mainwindow.cpp
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/html2pdf/html2pdf.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/html2pdf/html2pdf.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/html2pdf/html2pdf.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/html2pdf/html2pdf.pro 2017-12-25 12:49:15.954361683 +0100
@@ -2,6 +2,8 @@
QT += webenginewidgets
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
SOURCES += html2pdf.cpp
target.path = $$[QT_INSTALL_EXAMPLES]/webenginewidgets/html2pdf
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/maps/maps.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/maps/maps.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/maps/maps.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/maps/maps.pro 2017-12-25 12:49:16.125359268 +0100
@@ -2,6 +2,8 @@
QT += webenginewidgets
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
mainwindow.h
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/markdowneditor/markdowneditor.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/markdowneditor/markdowneditor.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/markdowneditor/markdowneditor.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/markdowneditor/markdowneditor.pro 2017-12-25 12:49:16.187358393 +0100
@@ -3,6 +3,8 @@
QT += webenginewidgets webchannel
CONFIG += c++11
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
mainwindow.h \
previewpage.h \
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/minimal/minimal.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/minimal/minimal.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/minimal/minimal.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/minimal/minimal.pro 2017-12-25 12:49:16.247357545 +0100
@@ -2,6 +2,8 @@
QT += webenginewidgets
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
SOURCES += main.cpp
target.path = $$[QT_INSTALL_EXAMPLES]/webenginewidgets/minimal
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/simplebrowser/simplebrowser.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/simplebrowser/simplebrowser.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/simplebrowser/simplebrowser.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/simplebrowser/simplebrowser.pro 2017-12-25 12:49:16.314356599 +0100
@@ -3,6 +3,8 @@
QT += webenginewidgets
CONFIG += c++11
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
browser.h \
browserwindow.h \
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/spellchecker/spellchecker.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/spellchecker/spellchecker.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/spellchecker/spellchecker.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/spellchecker/spellchecker.pro 2017-12-25 12:49:16.314356599 +0100
@@ -9,6 +9,8 @@
error("Spellcheck example can not be built when using native OS dictionaries.")
}
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
webview.h
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/stylesheetbrowser/stylesheetbrowser.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/stylesheetbrowser/stylesheetbrowser.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/stylesheetbrowser/stylesheetbrowser.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/stylesheetbrowser/stylesheetbrowser.pro 2017-12-25 12:50:32.558279999 +0100
@@ -3,6 +3,8 @@
QT += webenginewidgets
CONFIG += c++11
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
mainwindow.h \
stylesheetdialog.h
diff -Nur qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/videoplayer/videoplayer.pro qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/videoplayer/videoplayer.pro
--- qtwebengine-everywhere-src-5.10.0/examples/webenginewidgets/videoplayer/videoplayer.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/examples/webenginewidgets/videoplayer/videoplayer.pro 2017-12-25 12:49:16.314356599 +0100
@@ -2,6 +2,8 @@
QT += webenginewidgets
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../../../src/core/Release
+
HEADERS += \
mainwindow.h \
fullscreenwindow.h \
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/config/compiler/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/config/compiler/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/config/compiler/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/config/compiler/BUILD.gn 2017-12-25 12:49:16.315356585 +0100
@@ -600,13 +600,6 @@
} else if (current_cpu == "x86") {
cflags += [ "-m32" ]
ldflags += [ "-m32" ]
- if (!is_nacl) {
- cflags += [
- "-msse2",
- "-mfpmath=sse",
- "-mmmx",
- ]
- }
} else if (current_cpu == "arm") {
if (is_clang && !is_android && !is_nacl) {
cflags += [ "--target=arm-linux-gnueabihf" ]
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/config/v8_target_cpu.gni qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/config/v8_target_cpu.gni
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/config/v8_target_cpu.gni 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/config/v8_target_cpu.gni 2017-12-25 12:49:16.315356585 +0100
@@ -59,3 +59,11 @@
# It should never be explicitly set by the user.
v8_current_cpu = v8_target_cpu
}
+
+if (v8_current_cpu == "x86") {
+ # If we are not building for the x86_sse2 toolchain, we actually want to build
+ # the "x87" backend instead.
+ if (current_toolchain != "//build/toolchain/linux:x86_sse2") {
+ v8_current_cpu = "x87"
+ }
+}
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/toolchain/gcc_toolchain.gni qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/toolchain/gcc_toolchain.gni
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/toolchain/gcc_toolchain.gni 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/toolchain/gcc_toolchain.gni 2017-12-25 12:49:16.454354623 +0100
@@ -266,6 +266,10 @@
enable_linker_map = defined(invoker.enable_linker_map) &&
invoker.enable_linker_map && generate_linker_map
+ if (defined(invoker.shlib_subdir)) {
+ shlib_subdir = invoker.shlib_subdir
+ }
+
# These library switches can apply to all tools below.
lib_switch = "-l"
lib_dir_switch = "-L"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/toolchain/linux/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/toolchain/linux/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/build/toolchain/linux/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/build/toolchain/linux/BUILD.gn 2017-12-25 12:49:16.454354623 +0100
@@ -110,6 +110,26 @@
}
}
+gcc_toolchain("x86_sse2") {
+ cc = "gcc"
+ cxx = "g++"
+
+ readelf = "readelf"
+ nm = "nm"
+ ar = "ar"
+ ld = cxx
+
+ extra_cflags = "-msse2 -mfpmath=sse"
+ extra_cxxflags = "-msse2 -mfpmath=sse"
+ shlib_subdir = "lib/sse2"
+
+ toolchain_args = {
+ current_cpu = "x86"
+ current_os = "linux"
+ is_clang = false
+ }
+}
+
clang_toolchain("clang_x64") {
# Output linker map files for binary size analysis.
enable_linker_map = true
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/base/math_util.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/base/math_util.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/base/math_util.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/base/math_util.cc 2017-12-26 23:04:53.301868189 +0100
@@ -7,7 +7,7 @@
#include <algorithm>
#include <cmath>
#include <limits>
-#if defined(ARCH_CPU_X86_FAMILY)
+#ifdef __SSE__
#include <xmmintrin.h>
#endif
@@ -810,7 +810,7 @@
}
ScopedSubnormalFloatDisabler::ScopedSubnormalFloatDisabler() {
-#if defined(ARCH_CPU_X86_FAMILY)
+#ifdef __SSE__
// Turn on "subnormals are zero" and "flush to zero" CSR flags.
orig_state_ = _mm_getcsr();
_mm_setcsr(orig_state_ | 0x8040);
@@ -818,7 +818,7 @@
}
ScopedSubnormalFloatDisabler::~ScopedSubnormalFloatDisabler() {
-#if defined(ARCH_CPU_X86_FAMILY)
+#ifdef __SSE__
_mm_setcsr(orig_state_);
#endif
}
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/base/math_util.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/base/math_util.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/base/math_util.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/base/math_util.h 2017-12-26 23:04:53.301868189 +0100
@@ -11,7 +11,6 @@
#include <vector>
#include "base/logging.h"
-#include "build/build_config.h"
#include "cc/base/base_export.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/point3_f.h"
@@ -331,7 +330,7 @@
~ScopedSubnormalFloatDisabler();
private:
-#if defined(ARCH_CPU_X86_FAMILY)
+#ifdef __SSE__
unsigned int orig_state_;
#endif
DISALLOW_COPY_AND_ASSIGN(ScopedSubnormalFloatDisabler);
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/cc/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/cc/BUILD.gn 2017-12-25 13:16:20.896994372 +0100
@@ -445,13 +445,6 @@
"trees/tree_synchronizer.h",
]
- if (current_cpu == "x86" || current_cpu == "x64") {
- sources += [
- "raster/texture_compressor_etc1_sse.cc",
- "raster/texture_compressor_etc1_sse.h",
- ]
- }
-
# TODO(khushalsagar): Remove once crbug.com/683263 is fixed.
configs = [ "//build/config/compiler:no_size_t_to_int_warning" ]
@@ -463,6 +456,7 @@
deps = [
"//base",
"//base/third_party/dynamic_annotations",
+ "//cc:cc_opts",
"//cc/paint",
"//components/viz/common",
"//gpu",
@@ -493,6 +487,36 @@
}
}
+source_set("cc_opts") {
+ public_deps = [
+ "//cc:cc_opts_sse",
+ ]
+}
+
+source_set("cc_opts_sse") {
+ if (current_cpu == "x86" || current_cpu == "x64") {
+ deps = [
+ "//base",
+ ]
+
+ defines = [ "CC_IMPLEMENTATION=1" ]
+
+ if (!is_debug && (is_win || is_android)) {
+ configs -= [ "//build/config/compiler:optimize" ]
+ configs += [ "//build/config/compiler:optimize_max" ]
+ }
+
+ sources = [
+ "raster/texture_compressor.h",
+ "raster/texture_compressor_etc1.h",
+ "raster/texture_compressor_etc1_sse.cc",
+ "raster/texture_compressor_etc1_sse.h",
+ ]
+
+ cflags = [ "-msse2" ]
+ }
+}
+
cc_static_library("test_support") {
testonly = true
sources = [
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/content/renderer/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/content/renderer/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/content/renderer/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/content/renderer/BUILD.gn 2017-12-25 12:49:16.454354623 +0100
@@ -514,6 +514,13 @@
"//ui/surface",
"//v8",
]
+
+ if (current_cpu == "x86") {
+ deps += [
+ "//v8(//build/toolchain/linux:x86_sse2)",
+ ]
+ }
+
allow_circular_includes_from = []
if (use_aura && !use_qt) {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/BUILD.gn 2017-12-25 13:30:14.473844548 +0100
@@ -344,6 +344,12 @@
defines += [ "DISABLE_USER_INPUT_MONITOR" ]
}
+ if (current_cpu == "x86" || current_cpu == "x64") {
+ deps += [
+ ":media_sse",
+ ]
+ }
+
if (is_linux || is_win) {
sources += [
"keyboard_event_counter.cc",
@@ -366,6 +372,21 @@
]
}
+if (current_cpu == "x86" || current_cpu == "x64") {
+ source_set("media_sse") {
+ sources = [
+ "sinc_resampler_sse.cc",
+ ]
+ configs += [
+ "//media:media_config",
+ "//media:media_implementation",
+ ]
+ if (!is_win) {
+ cflags = [ "-msse" ]
+ }
+ }
+}
+
if (is_android) {
java_cpp_enum("java_enums") {
sources = [
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/media.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/media.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/media.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/media.cc 2017-12-25 13:32:19.234052101 +0100
@@ -10,6 +10,8 @@
#include "base/metrics/field_trial.h"
#include "base/trace_event/trace_event.h"
#include "media/base/media_switches.h"
+#include "media/base/sinc_resampler.h"
+#include "media/base/vector_math.h"
#include "third_party/libyuv/include/libyuv.h"
#if defined(OS_ANDROID)
@@ -30,6 +32,9 @@
TRACE_EVENT_WARMUP_CATEGORY("audio");
TRACE_EVENT_WARMUP_CATEGORY("media");
+ // Perform initialization of libraries which require runtime CPU detection.
+ vector_math::Initialize();
+ SincResampler::InitializeCPUSpecificFeatures();
libyuv::InitCpuFlags();
#if !defined(MEDIA_DISABLE_FFMPEG)
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler.cc 2017-12-25 12:57:58.624478849 +0100
@@ -81,17 +81,12 @@
#include <cmath>
#include <limits>
+#include "base/cpu.h"
#include "base/logging.h"
#include "build/build_config.h"
-#if defined(ARCH_CPU_X86_FAMILY)
-#include <xmmintrin.h>
-#define CONVOLVE_FUNC Convolve_SSE
-#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
-#define CONVOLVE_FUNC Convolve_NEON
-#else
-#define CONVOLVE_FUNC Convolve_C
#endif
namespace media {
@@ -112,10 +107,41 @@
return sinc_scale_factor;
}
+#undef CONVOLVE_FUNC
+
static int CalculateChunkSize(int block_size_, double io_ratio) {
return block_size_ / io_ratio;
}
+// If we know the minimum architecture at compile time, avoid CPU detection.
+// Force NaCl code to use C routines since (at present) nothing there uses these
+// methods and plumbing the -msse built library is non-trivial.
+#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
+#if defined(__SSE__)
+#define CONVOLVE_FUNC Convolve_SSE
+void SincResampler::InitializeCPUSpecificFeatures() {}
+#else
+// X86 CPU detection required. Functions will be set by
+// InitializeCPUSpecificFeatures().
+#define CONVOLVE_FUNC g_convolve_proc_
+
+typedef float (*ConvolveProc)(const float*, const float*, const float*, double);
+static ConvolveProc g_convolve_proc_ = NULL;
+
+void SincResampler::InitializeCPUSpecificFeatures() {
+ CHECK(!g_convolve_proc_);
+ g_convolve_proc_ = base::CPU().has_sse() ? Convolve_SSE : Convolve_C;
+}
+#endif
+#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#define CONVOLVE_FUNC Convolve_NEON
+void SincResampler::InitializeCPUSpecificFeatures() {}
+#else
+// Unknown architecture.
+#define CONVOLVE_FUNC Convolve_C
+void SincResampler::InitializeCPUSpecificFeatures() {}
+#endif
+
SincResampler::SincResampler(double io_sample_rate_ratio,
int request_frames,
const ReadCB& read_cb)
@@ -328,46 +354,7 @@
kernel_interpolation_factor * sum2);
}
-#if defined(ARCH_CPU_X86_FAMILY)
-float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1,
- const float* k2,
- double kernel_interpolation_factor) {
- __m128 m_input;
- __m128 m_sums1 = _mm_setzero_ps();
- __m128 m_sums2 = _mm_setzero_ps();
-
- // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
- // these loops hurt performance in local testing.
- if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
- for (int i = 0; i < kKernelSize; i += 4) {
- m_input = _mm_loadu_ps(input_ptr + i);
- m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
- m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
- }
- } else {
- for (int i = 0; i < kKernelSize; i += 4) {
- m_input = _mm_load_ps(input_ptr + i);
- m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
- m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
- }
- }
-
- // Linearly interpolate the two "convolutions".
- m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(
- static_cast<float>(1.0 - kernel_interpolation_factor)));
- m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(
- static_cast<float>(kernel_interpolation_factor)));
- m_sums1 = _mm_add_ps(m_sums1, m_sums2);
-
- // Sum components together.
- float result;
- m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
- _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(
- m_sums2, m_sums2, 1)));
-
- return result;
-}
-#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
const float* k2,
double kernel_interpolation_factor) {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler.h 2017-12-25 12:57:58.798476686 +0100
@@ -36,6 +36,10 @@
kKernelStorageSize = kKernelSize * (kKernelOffsetCount + 1),
};
+ // Selects runtime specific CPU features like SSE. Must be called before
+ // using SincResampler.
+ static void InitializeCPUSpecificFeatures();
+
// Callback type for providing more data into the resampler. Expects |frames|
// of data to be rendered into |destination|; zero padded if not enough frames
// are available to satisfy the request.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_perftest.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_perftest.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_perftest.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_perftest.cc 2017-12-25 12:57:58.798476686 +0100
@@ -4,6 +4,7 @@
#include "base/bind.h"
#include "base/bind_helpers.h"
+#include "base/cpu.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/base/sinc_resampler.h"
@@ -61,6 +62,9 @@
&resampler, SincResampler::Convolve_C, true, "unoptimized_aligned");
#if defined(CONVOLVE_FUNC)
+#if defined(ARCH_CPU_X86_FAMILY)
+ ASSERT_TRUE(base::CPU().has_sse());
+#endif
RunConvolveBenchmark(
&resampler, SincResampler::CONVOLVE_FUNC, true, "optimized_aligned");
RunConvolveBenchmark(
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_sse.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_sse.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_sse.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_sse.cc 2017-07-01 03:36:35.000000000 +0200
@@ -0,0 +1,50 @@
+// Copyright 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "media/base/sinc_resampler.h"
+
+#include <xmmintrin.h>
+
+namespace media {
+
+float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor) {
+ __m128 m_input;
+ __m128 m_sums1 = _mm_setzero_ps();
+ __m128 m_sums2 = _mm_setzero_ps();
+
+ // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
+ // these loops hurt performance in local testing.
+ if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
+ for (int i = 0; i < kKernelSize; i += 4) {
+ m_input = _mm_loadu_ps(input_ptr + i);
+ m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
+ m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
+ }
+ } else {
+ for (int i = 0; i < kKernelSize; i += 4) {
+ m_input = _mm_load_ps(input_ptr + i);
+ m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
+ m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
+ }
+ }
+
+ // Linearly interpolate the two "convolutions".
+ m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(
+ static_cast<float>(1.0 - kernel_interpolation_factor)));
+ m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(
+ static_cast<float>(kernel_interpolation_factor)));
+ m_sums1 = _mm_add_ps(m_sums1, m_sums2);
+
+ // Sum components together.
+ float result;
+ m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
+ _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(
+ m_sums2, m_sums2, 1)));
+
+ return result;
+}
+
+} // namespace media
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_unittest.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_unittest.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/sinc_resampler_unittest.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/sinc_resampler_unittest.cc 2017-12-25 12:57:58.798476686 +0100
@@ -10,6 +10,7 @@
#include "base/bind.h"
#include "base/bind_helpers.h"
+#include "base/cpu.h"
#include "base/macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
@@ -166,6 +167,10 @@
static const double kKernelInterpolationFactor = 0.5;
TEST(SincResamplerTest, Convolve) {
+#if defined(ARCH_CPU_X86_FAMILY)
+ ASSERT_TRUE(base::CPU().has_sse());
+#endif
+
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math.cc 2017-12-25 12:57:58.799476673 +0100
@@ -7,12 +7,17 @@
#include <algorithm>
+#include "base/cpu.h"
#include "base/logging.h"
#include "build/build_config.h"
+namespace media {
+namespace vector_math {
+
+// If we know the minimum architecture at compile time, avoid CPU detection.
// NaCl does not allow intrinsics.
#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
-#include <xmmintrin.h>
+#if defined(__SSE__)
// Don't use custom SSE versions where the auto-vectorized C version performs
// better, which is anywhere clang is used.
// TODO(pcc): Linux currently uses ThinLTO which has broken auto-vectorization
@@ -25,20 +30,52 @@
#define FMUL_FUNC FMUL_C
#endif
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
+void Initialize() {}
+#else
+// X86 CPU detection required. Functions will be set by Initialize().
+#if !defined(__clang__)
+#define FMAC_FUNC g_fmac_proc_
+#define FMUL_FUNC g_fmul_proc_
+#else
+#define FMAC_FUNC FMAC_C
+#define FMUL_FUNC FMUL_C
+#endif
+#define EWMAAndMaxPower_FUNC g_ewma_power_proc_
+
+#if !defined(__clang__)
+typedef void (*MathProc)(const float src[], float scale, int len, float dest[]);
+static MathProc g_fmac_proc_ = NULL;
+static MathProc g_fmul_proc_ = NULL;
+#endif
+typedef std::pair<float, float> (*EWMAAndMaxPowerProc)(
+ float initial_value, const float src[], int len, float smoothing_factor);
+static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL;
+
+void Initialize() {
+ CHECK(!g_fmac_proc_);
+ CHECK(!g_fmul_proc_);
+ CHECK(!g_ewma_power_proc_);
+ const bool kUseSSE = base::CPU().has_sse();
+#if !defined(__clang__)
+ g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C;
+ g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C;
+#endif
+ g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C;
+}
+#endif
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
#define FMAC_FUNC FMAC_NEON
#define FMUL_FUNC FMUL_NEON
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
+void Initialize() {}
#else
#define FMAC_FUNC FMAC_C
#define FMUL_FUNC FMUL_C
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
+void Initialize() {}
#endif
-namespace media {
-namespace vector_math {
-
void FMAC(const float src[], float scale, int len, float dest[]) {
// Ensure |src| and |dest| are 16-byte aligned.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
@@ -91,111 +128,6 @@
return result;
}
-#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
-void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
- const int rem = len % 4;
- const int last_index = len - rem;
- __m128 m_scale = _mm_set_ps1(scale);
- for (int i = 0; i < last_index; i += 4)
- _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
-
- // Handle any remaining values that wouldn't fit in an SSE pass.
- for (int i = last_index; i < len; ++i)
- dest[i] = src[i] * scale;
-}
-
-void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
- const int rem = len % 4;
- const int last_index = len - rem;
- __m128 m_scale = _mm_set_ps1(scale);
- for (int i = 0; i < last_index; i += 4) {
- _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
- _mm_mul_ps(_mm_load_ps(src + i), m_scale)));
- }
-
- // Handle any remaining values that wouldn't fit in an SSE pass.
- for (int i = last_index; i < len; ++i)
- dest[i] += src[i] * scale;
-}
-
-// Convenience macro to extract float 0 through 3 from the vector |a|. This is
-// needed because compilers other than clang don't support access via
-// operator[]().
-#define EXTRACT_FLOAT(a, i) \
- (i == 0 ? \
- _mm_cvtss_f32(a) : \
- _mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
-
-std::pair<float, float> EWMAAndMaxPower_SSE(
- float initial_value, const float src[], int len, float smoothing_factor) {
- // When the recurrence is unrolled, we see that we can split it into 4
- // separate lanes of evaluation:
- //
- // y[n] = a(S[n]^2) + (1-a)(y[n-1])
- // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
- // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
- //
- // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
- //
- // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
- // each of the 4 lanes, and then combine them to give y[n].
-
- const int rem = len % 4;
- const int last_index = len - rem;
-
- const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
- const float weight_prev = 1.0f - smoothing_factor;
- const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
- const __m128 weight_prev_squared_x4 =
- _mm_mul_ps(weight_prev_x4, weight_prev_x4);
- const __m128 weight_prev_4th_x4 =
- _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
-
- // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
- // 0, respectively.
- __m128 max_x4 = _mm_setzero_ps();
- __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
- int i;
- for (i = 0; i < last_index; i += 4) {
- ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
- const __m128 sample_x4 = _mm_load_ps(src + i);
- const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
- max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
- // Note: The compiler optimizes this to a single multiply-and-accumulate
- // instruction:
- ewma_x4 = _mm_add_ps(ewma_x4,
- _mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
- }
-
- // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
- float ewma = EXTRACT_FLOAT(ewma_x4, 3);
- ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
- ewma += EXTRACT_FLOAT(ewma_x4, 2);
- ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
- ewma += EXTRACT_FLOAT(ewma_x4, 1);
- ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
- ewma += EXTRACT_FLOAT(ewma_x4, 0);
-
- // Fold the maximums together to get the overall maximum.
- max_x4 = _mm_max_ps(max_x4,
- _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
- max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
-
- std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
-
- // Handle remaining values at the end of |src|.
- for (; i < len; ++i) {
- result.first *= weight_prev;
- const float sample = src[i];
- const float sample_squared = sample * sample;
- result.first += sample_squared * smoothing_factor;
- result.second = std::max(result.second, sample_squared);
- }
-
- return result;
-}
-#endif
-
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math.h 2017-12-25 12:57:58.799476673 +0100
@@ -15,6 +15,11 @@
// Required alignment for inputs and outputs to all vector math functions
enum { kRequiredAlignment = 16 };
+// Selects runtime specific optimizations such as SSE. Must be called prior to
+// calling FMAC() or FMUL(). Called during media library initialization; most
+// users should never have to call this.
+MEDIA_EXPORT void Initialize();
+
// Multiply each element of |src| (up to |len|) by |scale| and add to |dest|.
// |src| and |dest| must be aligned by kRequiredAlignment.
MEDIA_EXPORT void FMAC(const float src[], float scale, int len, float dest[]);
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_perftest.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_perftest.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_perftest.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_perftest.cc 2017-12-25 12:57:58.800476661 +0100
@@ -5,6 +5,7 @@
#include <memory>
#include "base/macros.h"
+#include "base/cpu.h"
#include "base/memory/aligned_memory.h"
#include "base/time/time.h"
#include "build/build_config.h"
@@ -82,15 +83,11 @@
DISALLOW_COPY_AND_ASSIGN(VectorMathPerfTest);
};
-// Define platform dependent function names for SIMD optimized methods.
+// Define platform independent function name for FMAC* perf tests.
#if defined(ARCH_CPU_X86_FAMILY)
#define FMAC_FUNC FMAC_SSE
-#define FMUL_FUNC FMUL_SSE
-#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#define FMAC_FUNC FMAC_NEON
-#define FMUL_FUNC FMUL_NEON
-#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
#endif
// Benchmark for each optimized vector_math::FMAC() method.
@@ -99,6 +96,9 @@
RunBenchmark(
vector_math::FMAC_C, true, "vector_math_fmac", "unoptimized");
#if defined(FMAC_FUNC)
+#if defined(ARCH_CPU_X86_FAMILY)
+ ASSERT_TRUE(base::CPU().has_sse());
+#endif
// Benchmark FMAC_FUNC() with unaligned size.
ASSERT_NE((kVectorSize - 1) % (vector_math::kRequiredAlignment /
sizeof(float)), 0U);
@@ -112,12 +112,24 @@
#endif
}
+#undef FMAC_FUNC
+
+// Define platform independent function name for FMULBenchmark* tests.
+#if defined(ARCH_CPU_X86_FAMILY)
+#define FMUL_FUNC FMUL_SSE
+#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#define FMUL_FUNC FMUL_NEON
+#endif
+
// Benchmark for each optimized vector_math::FMUL() method.
TEST_F(VectorMathPerfTest, FMUL) {
// Benchmark FMUL_C().
RunBenchmark(
vector_math::FMUL_C, true, "vector_math_fmul", "unoptimized");
#if defined(FMUL_FUNC)
+#if defined(ARCH_CPU_X86_FAMILY)
+ ASSERT_TRUE(base::CPU().has_sse());
+#endif
// Benchmark FMUL_FUNC() with unaligned size.
ASSERT_NE((kVectorSize - 1) % (vector_math::kRequiredAlignment /
sizeof(float)), 0U);
@@ -131,6 +143,14 @@
#endif
}
+#undef FMUL_FUNC
+
+#if defined(ARCH_CPU_X86_FAMILY)
+#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
+#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
+#endif
+
// Benchmark for each optimized vector_math::EWMAAndMaxPower() method.
TEST_F(VectorMathPerfTest, EWMAAndMaxPower) {
// Benchmark EWMAAndMaxPower_C().
@@ -139,6 +159,9 @@
"vector_math_ewma_and_max_power",
"unoptimized");
#if defined(EWMAAndMaxPower_FUNC)
+#if defined(ARCH_CPU_X86_FAMILY)
+ ASSERT_TRUE(base::CPU().has_sse());
+#endif
// Benchmark EWMAAndMaxPower_FUNC() with unaligned size.
ASSERT_NE((kVectorSize - 1) % (vector_math::kRequiredAlignment /
sizeof(float)), 0U);
@@ -156,4 +179,6 @@
#endif
}
+#undef EWMAAndMaxPower_FUNC
+
} // namespace media
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_sse.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_sse.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_sse.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_sse.cc 2017-07-01 03:36:35.000000000 +0200
@@ -0,0 +1,118 @@
+// Copyright 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "media/base/vector_math_testing.h"
+
+#include <algorithm>
+
+#include <xmmintrin.h> // NOLINT
+
+namespace media {
+namespace vector_math {
+
+void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
+ const int rem = len % 4;
+ const int last_index = len - rem;
+ __m128 m_scale = _mm_set_ps1(scale);
+ for (int i = 0; i < last_index; i += 4)
+ _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
+
+ // Handle any remaining values that wouldn't fit in an SSE pass.
+ for (int i = last_index; i < len; ++i)
+ dest[i] = src[i] * scale;
+}
+
+void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
+ const int rem = len % 4;
+ const int last_index = len - rem;
+ __m128 m_scale = _mm_set_ps1(scale);
+ for (int i = 0; i < last_index; i += 4) {
+ _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
+ _mm_mul_ps(_mm_load_ps(src + i), m_scale)));
+ }
+
+ // Handle any remaining values that wouldn't fit in an SSE pass.
+ for (int i = last_index; i < len; ++i)
+ dest[i] += src[i] * scale;
+}
+
+// Convenience macro to extract float 0 through 3 from the vector |a|. This is
+// needed because compilers other than clang don't support access via
+// operator[]().
+#define EXTRACT_FLOAT(a, i) \
+ (i == 0 ? \
+ _mm_cvtss_f32(a) : \
+ _mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
+
+std::pair<float, float> EWMAAndMaxPower_SSE(
+ float initial_value, const float src[], int len, float smoothing_factor) {
+ // When the recurrence is unrolled, we see that we can split it into 4
+ // separate lanes of evaluation:
+ //
+ // y[n] = a(S[n]^2) + (1-a)(y[n-1])
+ // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
+ // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
+ //
+ // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
+ //
+ // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
+ // each of the 4 lanes, and then combine them to give y[n].
+
+ const int rem = len % 4;
+ const int last_index = len - rem;
+
+ const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
+ const float weight_prev = 1.0f - smoothing_factor;
+ const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
+ const __m128 weight_prev_squared_x4 =
+ _mm_mul_ps(weight_prev_x4, weight_prev_x4);
+ const __m128 weight_prev_4th_x4 =
+ _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
+
+ // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
+ // 0, respectively.
+ __m128 max_x4 = _mm_setzero_ps();
+ __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
+ int i;
+ for (i = 0; i < last_index; i += 4) {
+ ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
+ const __m128 sample_x4 = _mm_load_ps(src + i);
+ const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
+ max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
+ // Note: The compiler optimizes this to a single multiply-and-accumulate
+ // instruction:
+ ewma_x4 = _mm_add_ps(ewma_x4,
+ _mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
+ }
+
+ // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
+ float ewma = EXTRACT_FLOAT(ewma_x4, 3);
+ ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
+ ewma += EXTRACT_FLOAT(ewma_x4, 2);
+ ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
+ ewma += EXTRACT_FLOAT(ewma_x4, 1);
+ ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
+ ewma += EXTRACT_FLOAT(ewma_x4, 0);
+
+ // Fold the maximums together to get the overall maximum.
+ max_x4 = _mm_max_ps(max_x4,
+ _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
+ max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
+
+ std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
+
+ // Handle remaining values at the end of |src|.
+ for (; i < len; ++i) {
+ result.first *= weight_prev;
+ const float sample = src[i];
+ const float sample_squared = sample * sample;
+ result.first += sample_squared * smoothing_factor;
+ result.second = std::max(result.second, sample_squared);
+ }
+
+ return result;
+}
+
+} // namespace vector_math
+} // namespace media
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_testing.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_testing.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_testing.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_testing.h 2017-12-25 12:57:58.800476661 +0100
@@ -19,7 +19,7 @@
MEDIA_EXPORT std::pair<float, float> EWMAAndMaxPower_C(
float initial_value, const float src[], int len, float smoothing_factor);
-#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
+#if defined(ARCH_CPU_X86_FAMILY)
MEDIA_EXPORT void FMAC_SSE(const float src[], float scale, int len,
float dest[]);
MEDIA_EXPORT void FMUL_SSE(const float src[], float scale, int len,
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_unittest.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_unittest.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/base/vector_math_unittest.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/base/vector_math_unittest.cc 2017-12-25 12:57:58.800476661 +0100
@@ -9,6 +9,7 @@
#include <memory>
#include "base/macros.h"
+#include "base/cpu.h"
#include "base/memory/aligned_memory.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringize_macros.h"
@@ -78,6 +79,7 @@
#if defined(ARCH_CPU_X86_FAMILY)
{
+ ASSERT_TRUE(base::CPU().has_sse());
SCOPED_TRACE("FMAC_SSE");
FillTestVectors(kInputFillValue, kOutputFillValue);
vector_math::FMAC_SSE(
@@ -119,6 +121,7 @@
#if defined(ARCH_CPU_X86_FAMILY)
{
+ ASSERT_TRUE(base::CPU().has_sse());
SCOPED_TRACE("FMUL_SSE");
FillTestVectors(kInputFillValue, kOutputFillValue);
vector_math::FMUL_SSE(
@@ -227,6 +230,7 @@
#if defined(ARCH_CPU_X86_FAMILY)
{
+ ASSERT_TRUE(base::CPU().has_sse());
SCOPED_TRACE("EWMAAndMaxPower_SSE");
const std::pair<float, float>& result = vector_math::EWMAAndMaxPower_SSE(
initial_value_, data_.get(), data_len_, smoothing_factor_);
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/BUILD.gn 2017-12-25 13:38:30.438718953 +0100
@@ -534,6 +534,26 @@
"//base",
"//ui/gfx/geometry",
]
+ if (current_cpu == "x86" || current_cpu == "x64") {
+ deps += [
+ ":shared_memory_support_sse",
+ ]
+ }
+}
+
+if (current_cpu == "x86" || current_cpu == "x64") {
+ source_set("shared_memory_support_sse") {
+ sources = [
+ "base/vector_math_sse.cc",
+ ]
+ configs += [
+ "//media:media_config",
+ "//media:media_implementation",
+ ]
+ if (!is_win) {
+ cflags = [ "-msse" ]
+ }
+ }
}
# TODO(watk): Refactor tests that could be made to run on Android. See
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/filters/wsola_internals.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/filters/wsola_internals.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/media/filters/wsola_internals.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/media/filters/wsola_internals.cc 2017-12-26 23:00:39.631753174 +0100
@@ -15,7 +15,7 @@
#include "base/logging.h"
#include "media/base/audio_bus.h"
-#if defined(ARCH_CPU_X86_FAMILY)
+#if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__)
#define USE_SIMD 1
#include <xmmintrin.h>
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/BUILD.gn 2017-12-25 13:45:09.341998517 +0100
@@ -257,17 +257,6 @@
"ext/platform_canvas.h",
]
}
- if (!is_ios && (current_cpu == "x86" || current_cpu == "x64")) {
- sources += [
- "ext/convolver_SSE2.cc",
- "ext/convolver_SSE2.h",
- ]
- } else if (current_cpu == "mipsel" && mips_dsp_rev >= 2) {
- sources += [
- "ext/convolver_mips_dspr2.cc",
- "ext/convolver_mips_dspr2.h",
- ]
- }
if (!is_fuchsia) {
sources -= [
@@ -522,6 +511,31 @@
}
}
if (current_cpu == "x86" || current_cpu == "x64") {
+ source_set("skia_opts_sse2") {
+ sources = skia_opts.sse2_sources +
+ [
+ # Chrome-specific.
+ "ext/convolver_SSE2.cc",
+ "ext/convolver_SSE2.h",
+ ]
+ sources -= [
+ # Detection code must not be built with -msse2
+ "//third_party/skia/src/opts/opts_check_x86.cpp",
+ ]
+ if (!is_win || is_clang) {
+ cflags = [ "-msse2" ]
+ }
+ if (is_win) {
+ defines = [ "SK_CPU_SSE_LEVEL=20" ]
+ }
+ visibility = [ ":skia_opts" ]
+ configs -= [ "//build/config/compiler:chromium_code" ]
+ configs += [
+ ":skia_config",
+ ":skia_library_config",
+ "//build/config/compiler:no_chromium_code",
+ ]
+ }
source_set("skia_opts_sse3") {
sources = skia_opts.ssse3_sources
if (!is_win || is_clang) {
@@ -626,10 +640,13 @@
]
if (current_cpu == "x86" || current_cpu == "x64") {
- sources = skia_opts.sse2_sources
+ sources = [
+ "//third_party/skia/src/opts/opts_check_x86.cpp",
+ ]
deps += [
":skia_opts_avx",
":skia_opts_hsw",
+ ":skia_opts_sse2",
":skia_opts_sse3",
":skia_opts_sse41",
":skia_opts_sse42",
@@ -664,6 +681,13 @@
if (mips_dsp_rev >= 1) {
sources = skia_opts.mips_dsp_sources
+ if (mips_dsp_rev >= 2) {
+ sources += [
+ # Chrome-specific.
+ "ext/convolver_mips_dspr2.cc",
+ "ext/convolver_mips_dspr2.h",
+ ]
+ }
} else {
sources = skia_opts.none_sources
}
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/ext/convolver.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/ext/convolver.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/ext/convolver.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/ext/convolver.cc 2017-12-25 13:05:23.911940902 +0100
@@ -362,10 +362,13 @@
void SetupSIMD(ConvolveProcs *procs) {
#ifdef SIMD_SSE2
- procs->extra_horizontal_reads = 3;
- procs->convolve_vertically = &ConvolveVertically_SSE2;
- procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
- procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
+ base::CPU cpu;
+ if (cpu.has_sse2()) {
+ procs->extra_horizontal_reads = 3;
+ procs->convolve_vertically = &ConvolveVertically_SSE2;
+ procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
+ procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
+ }
#elif defined SIMD_MIPS_DSPR2
procs->extra_horizontal_reads = 3;
procs->convolve_vertically = &ConvolveVertically_mips_dspr2;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/ext/convolver.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/ext/convolver.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/skia/ext/convolver.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/skia/ext/convolver.h 2017-12-25 13:05:23.951940405 +0100
@@ -11,6 +11,7 @@
#include <vector>
#include "build/build_config.h"
+#include "base/cpu.h"
#include "third_party/skia/include/core/SkSize.h"
#include "third_party/skia/include/core/SkTypes.h"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/BUILD.gn 2017-12-25 13:05:23.951940405 +0100
@@ -192,6 +192,26 @@
public_deps = [
":angle_common",
]
+
+ if (current_cpu == "x86") {
+ deps = [
+ ":angle_image_util_x86_sse2",
+ ]
+ }
+}
+
+source_set("angle_image_util_x86_sse2") {
+ configs -= angle_undefine_configs
+ configs += [ ":internal_config" ]
+
+ deps = [
+ ":angle_common",
+ ]
+
+ sources = [
+ "src/image_util/loadimage_SSE2.cpp",
+ ]
+ cflags = [ "-msse2", "-mfpmath=sse" ]
}
config("angle_gpu_info_util_config") {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/common/mathutil.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/common/mathutil.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/common/mathutil.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/common/mathutil.h 2017-12-25 13:05:23.951940405 +0100
@@ -124,9 +124,42 @@
}
}
-inline bool supportsSSE2()
+#if defined(ANGLE_USE_SSE) && !defined(__x86_64__) && !defined(__SSE2__) && !defined(_MSC_VER)
+
+// From the base/cpu.cc in Chromium, to avoid depending on Chromium headers
+
+#if defined(__pic__) && defined(__i386__)
+
+static inline void __cpuid(int cpu_info[4], int info_type) {
+ __asm__ volatile (
+ "mov %%ebx, %%edi\n"
+ "cpuid\n"
+ "xchg %%edi, %%ebx\n"
+ : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
+ : "a"(info_type)
+ );
+}
+
+#else
+
+static inline void __cpuid(int cpu_info[4], int info_type) {
+ __asm__ volatile (
+ "cpuid\n"
+ : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
+ : "a"(info_type)
+ );
+}
+
+#endif
+
+#endif
+
+static inline bool supportsSSE2()
{
#if defined(ANGLE_USE_SSE)
+#if defined(__x86_64__) || defined(__SSE2__)
+ return true;
+#else
static bool checked = false;
static bool supports = false;
@@ -135,7 +168,6 @@
return supports;
}
-#if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM)
{
int info[4];
__cpuid(info, 0);
@@ -147,9 +179,9 @@
supports = (info[3] >> 26) & 1;
}
}
-#endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM)
checked = true;
return supports;
+#endif // defined(x86_64) || defined(__SSE2__)
#else // defined(ANGLE_USE_SSE)
return false;
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/common/platform.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/common/platform.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/common/platform.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/common/platform.h 2017-12-25 13:05:23.951940405 +0100
@@ -87,7 +87,9 @@
#include <intrin.h>
#define ANGLE_USE_SSE
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
+#if defined(__x86_64__) || defined(__SSE2__)
#include <x86intrin.h>
+#endif
#define ANGLE_USE_SSE
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.cpp 2017-12-25 13:05:23.952940392 +0100
@@ -12,9 +12,17 @@
#include "common/platform.h"
#include "image_util/imageformats.h"
+#if defined(BUILD_ONLY_THE_SSE2_PARTS) && !defined(__SSE2__)
+#error SSE2 parts must be built with -msse2
+#endif
+
namespace angle
{
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+namespace SSE2 {
+#endif
+
void LoadA8ToRGBA8(size_t width,
size_t height,
size_t depth,
@@ -28,6 +36,11 @@
#if defined(ANGLE_USE_SSE)
if (gl::supportsSSE2())
{
+#if !defined(__x86_64__) && !defined(__SSE2__)
+ angle::SSE2::LoadA8ToRGBA8(width, height, depth, input, inputRowPitch,
+ inputDepthPitch, output, outputRowPitch,
+ outputDepthPitch);
+#else
__m128i zeroWide = _mm_setzero_si128();
for (size_t z = 0; z < depth; z++)
@@ -68,6 +81,7 @@
}
}
}
+#endif
return;
}
@@ -89,6 +103,8 @@
}
}
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
void LoadA8ToBGRA8(size_t width,
size_t height,
size_t depth,
@@ -584,6 +600,8 @@
}
}
+#endif
+
void LoadRGBA8ToBGRA8(size_t width,
size_t height,
size_t depth,
@@ -597,6 +615,11 @@
#if defined(ANGLE_USE_SSE)
if (gl::supportsSSE2())
{
+#if !defined(__x86_64__) && !defined(__SSE2__)
+ angle::SSE2::LoadRGBA8ToBGRA8(width, height, depth, input,
+ inputRowPitch, inputDepthPitch, output,
+ outputRowPitch, outputDepthPitch);
+#else
__m128i brMask = _mm_set1_epi32(0x00ff00ff);
for (size_t z = 0; z < depth; z++)
@@ -641,6 +664,7 @@
}
}
}
+#endif
return;
}
@@ -663,6 +687,8 @@
}
}
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
void LoadRGBA8ToBGRA4(size_t width,
size_t height,
size_t depth,
@@ -1320,4 +1346,10 @@
}
}
+#endif
+
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+} // namespace SSE2
+#endif
+
} // namespace angle
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage.h 2017-12-25 13:05:24.018939571 +0100
@@ -651,6 +651,32 @@
size_t outputRowPitch,
size_t outputDepthPitch);
+#if defined(__i386__)
+namespace SSE2 {
+
+void LoadA8ToRGBA8(size_t width,
+ size_t height,
+ size_t depth,
+ const uint8_t *input,
+ size_t inputRowPitch,
+ size_t inputDepthPitch,
+ uint8_t *output,
+ size_t outputRowPitch,
+ size_t outputDepthPitch);
+
+void LoadRGBA8ToBGRA8(size_t width,
+ size_t height,
+ size_t depth,
+ const uint8_t *input,
+ size_t inputRowPitch,
+ size_t inputDepthPitch,
+ uint8_t *output,
+ size_t outputRowPitch,
+ size_t outputDepthPitch);
+
+}
+#endif // defined(__i386__)
+
} // namespace angle
#include "loadimage.inl"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage_SSE2.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage_SSE2.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage_SSE2.cpp 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/angle/src/image_util/loadimage_SSE2.cpp 2017-12-25 13:05:24.018939571 +0100
@@ -0,0 +1,2 @@
+#define BUILD_ONLY_THE_SSE2_PARTS
+#include "loadimage.cpp"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/qcms/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/qcms/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/qcms/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/qcms/BUILD.gn 2017-12-25 13:51:32.804702578 +0100
@@ -34,8 +34,8 @@
defines = []
if (current_cpu == "x86" || current_cpu == "x64") {
- defines += [ "SSE2_ENABLE" ]
- sources += [ "src/transform-sse2.c" ]
+ defines += [ "SSE2_ENABLE" ] # runtime detection
+ deps = [ ":qcms_sse2" ]
}
if (use_libfuzzer) {
@@ -99,3 +99,15 @@
public_configs = [ ":qcms_config" ]
}
}
+
+source_set("qcms_sse2") {
+ configs -= [ "//build/config/compiler:chromium_code" ]
+ configs += [ "//build/config/compiler:no_chromium_code" ]
+ public_configs = [ ":qcms_config" ]
+
+ if (current_cpu == "x86" || current_cpu == "x64") {
+ defines = [ "SSE2_ENABLE" ]
+ sources = [ "src/transform-sse2.c" ]
+ cflags = [ "-msse2" ]
+ }
+}
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/modules/webaudio/AudioParamTimeline.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/modules/webaudio/AudioParamTimeline.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/modules/webaudio/AudioParamTimeline.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/modules/webaudio/AudioParamTimeline.cpp 2017-12-25 14:03:37.424681528 +0100
@@ -35,7 +35,7 @@
#include "platform/wtf/MathExtras.h"
#include "platform/wtf/PtrUtil.h"
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
#include <emmintrin.h>
#endif
@@ -1290,7 +1290,7 @@
size_t current_frame,
float value,
unsigned write_index) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
auto number_of_values = current_state.number_of_values;
#endif
auto fill_to_frame = current_state.fill_to_frame;
@@ -1303,7 +1303,7 @@
double delta_time = time2 - time1;
float k = delta_time > 0 ? 1 / delta_time : 0;
const float value_delta = value2 - value1;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if (fill_to_frame > write_index) {
// Minimize in-loop operations. Calculate starting value and increment.
// Next step: value += inc.
@@ -1431,7 +1431,7 @@
size_t current_frame,
float value,
unsigned write_index) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
auto number_of_values = current_state.number_of_values;
#endif
auto fill_to_frame = current_state.fill_to_frame;
@@ -1482,7 +1482,7 @@
for (; write_index < fill_to_frame; ++write_index)
values[write_index] = target;
} else {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if (fill_to_frame > write_index) {
// Resolve recursion by expanding constants to achieve a 4-step
// loop unrolling.
@@ -1616,7 +1616,7 @@
// Oversampled curve data can be provided if sharp discontinuities are
// desired.
unsigned k = 0;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if (fill_to_frame > write_index) {
const __m128 v_curve_virtual_index = _mm_set_ps1(curve_virtual_index);
const __m128 v_curve_points_per_frame = _mm_set_ps1(curve_points_per_frame);
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.cpp 2017-12-27 00:16:35.571877993 +0100
@@ -26,6 +26,9 @@
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+// include this first to get it before the CPU() function-like macro
+#include "base/cpu.h"
+
#include "platform/audio/DirectConvolver.h"
#include "build/build_config.h"
@@ -35,21 +38,48 @@
#include <Accelerate/Accelerate.h>
#endif
-#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_MACOSX)
+#if ((defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)) \
+ && !defined(OS_MACOSX)
#include <emmintrin.h>
#endif
+#if defined(BUILD_ONLY_THE_SSE2_PARTS) && !defined(__SSE2__)
+#error SSE2 parts must be built with -msse2
+#endif
+
namespace blink {
using namespace VectorMath;
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
DirectConvolver::DirectConvolver(size_t input_block_size)
- : input_block_size_(input_block_size), buffer_(input_block_size * 2) {}
+ : input_block_size_(input_block_size), buffer_(input_block_size * 2) {
+#ifdef ARCH_CPU_X86
+ base::CPU cpu;
+ m_haveSSE2 = cpu.has_sse2();
+#endif
+}
+
+#endif
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+void DirectConvolver::m_ProcessSSE2(AudioFloatArray* convolution_kernel,
+ const float* source_p,
+ float* dest_p,
+ size_t frames_to_process) {
+#else
void DirectConvolver::Process(AudioFloatArray* convolution_kernel,
const float* source_p,
float* dest_p,
size_t frames_to_process) {
+#endif
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (m_haveSSE2) {
+ m_ProcessSSE2(convolution_kernel, source_p, dest_p, frames_to_process);
+ return;
+ }
+#endif
DCHECK_EQ(frames_to_process, input_block_size_);
if (frames_to_process != input_block_size_)
return;
@@ -83,7 +113,7 @@
#endif // ARCH_CPU_X86
#else
size_t i = 0;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
// Convolution using SSE2. Currently only do this if both |kernelSize| and
// |framesToProcess| are multiples of 4. If not, use the straightforward loop
// below.
@@ -397,7 +427,7 @@
}
dest_p[i++] = sum;
}
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
}
#endif
#endif // OS_MACOSX
@@ -406,8 +436,12 @@
memcpy(buffer_.Data(), input_p, sizeof(float) * frames_to_process);
}
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
void DirectConvolver::Reset() {
buffer_.Zero();
}
+#endif
+
} // namespace blink
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolver.h 2017-12-25 14:39:21.094641400 +0100
@@ -29,6 +29,7 @@
#ifndef DirectConvolver_h
#define DirectConvolver_h
+#include "build/build_config.h"
#include "platform/PlatformExport.h"
#include "platform/audio/AudioArray.h"
#include "platform/wtf/Allocator.h"
@@ -54,6 +55,14 @@
size_t input_block_size_;
AudioFloatArray buffer_;
+
+#ifdef ARCH_CPU_X86
+ bool m_haveSSE2;
+ void m_ProcessSSE2(AudioFloatArray* convolution_kernel,
+ const float* source_p,
+ float* dest_p,
+ size_t frames_to_process);
+#endif
};
} // namespace blink
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolverSSE2.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolverSSE2.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolverSSE2.cpp 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/DirectConvolverSSE2.cpp 2017-12-25 13:05:24.021939534 +0100
@@ -0,0 +1,2 @@
+#define BUILD_ONLY_THE_SSE2_PARTS
+#include "DirectConvolver.cpp"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.cpp 2017-12-25 14:41:03.697194334 +0100
@@ -26,16 +26,23 @@
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+// include this first to get it before the CPU() function-like macro
+#include "base/cpu.h"
+
#include "platform/audio/SincResampler.h"
#include "build/build_config.h"
#include "platform/audio/AudioBus.h"
#include "platform/wtf/MathExtras.h"
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
#include <emmintrin.h>
#endif
+#if defined(BUILD_ONLY_THE_SSE2_PARTS) && !defined(__SSE2__)
+#error SSE2 parts must be built with -msse2
+#endif
+
// Input buffer layout, dividing the total buffer into regions (r0 - r5):
//
// |----------------|-----------------------------------------|----------------|
@@ -67,6 +74,8 @@
namespace blink {
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
SincResampler::SincResampler(double scale_factor,
unsigned kernel_size,
unsigned number_of_kernel_offsets)
@@ -82,6 +91,10 @@
source_frames_available_(0),
source_provider_(nullptr),
is_buffer_primed_(false) {
+#ifdef ARCH_CPU_X86
+ base::CPU cpu;
+ m_haveSSE2 = cpu.has_sse2();
+#endif
InitializeKernel();
}
@@ -205,9 +218,23 @@
}
}
+#endif
+
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+void SincResampler::m_ProcessSSE2(AudioSourceProvider* source_provider,
+ float* destination,
+ size_t frames_to_process) {
+#else
void SincResampler::Process(AudioSourceProvider* source_provider,
float* destination,
size_t frames_to_process) {
+#endif
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (m_haveSSE2) {
+ m_ProcessSSE2(source_provider, destination, frames_to_process);
+ return;
+ }
+#endif
bool is_good = source_provider && block_size_ > kernel_size_ &&
input_buffer_.size() >= block_size_ + kernel_size_ &&
!(kernel_size_ % 2);
@@ -276,7 +303,7 @@
{
float input;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
// If the sourceP address is not 16-byte aligned, the first several
// frames (at most three) should be processed seperately.
while ((reinterpret_cast<uintptr_t>(input_p) & 0x0F) && n) {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResampler.h 2017-12-25 14:40:36.454578552 +0100
@@ -29,6 +29,7 @@
#ifndef SincResampler_h
#define SincResampler_h
+#include "build/build_config.h"
#include "platform/PlatformExport.h"
#include "platform/audio/AudioArray.h"
#include "platform/audio/AudioSourceProvider.h"
@@ -96,6 +97,14 @@
// The buffer is primed once at the very beginning of processing.
bool is_buffer_primed_;
+
+#ifdef ARCH_CPU_X86
+ private:
+ bool m_haveSSE2;
+ void m_ProcessSSE2(AudioSourceProvider*,
+ float* destination,
+ size_t frames_to_process);
+#endif
};
} // namespace blink
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResamplerSSE2.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResamplerSSE2.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResamplerSSE2.cpp 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/SincResamplerSSE2.cpp 2017-12-25 13:05:24.022939522 +0100
@@ -0,0 +1,2 @@
+#define BUILD_ONLY_THE_SSE2_PARTS
+#include "SincResampler.cpp"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.cpp 2017-12-25 14:48:07.515216969 +0100
@@ -23,6 +23,9 @@
* DAMAGE.
*/
+// include this first to get it before the CPU() function-like macro
+#include "base/cpu.h"
+
#include "platform/audio/VectorMath.h"
#include <stdint.h>
@@ -35,10 +38,14 @@
#include <Accelerate/Accelerate.h>
#endif
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
#include <emmintrin.h>
#endif
+#if defined(BUILD_ONLY_THE_SSE2_PARTS) && !defined(__SSE2__)
+#error SSE2 parts must be built with -msse2
+#endif
+
#if WTF_CPU_ARM_NEON
#include <arm_neon.h>
#endif
@@ -170,15 +177,30 @@
}
#else
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+namespace SSE2 {
+#endif
+
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+static base::CPU cpu;
+#endif
+
void Vsma(const float* source_p,
int source_stride,
const float* scale,
float* dest_p,
int dest_stride,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vsma(source_p, source_stride, scale, dest_p,
+ dest_stride, frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if ((source_stride == 1) && (dest_stride == 1)) {
float k = *scale;
@@ -274,9 +296,16 @@
float* dest_p,
int dest_stride,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vsmul(source_p, source_stride, scale, dest_p,
+ dest_stride, frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if ((source_stride == 1) && (dest_stride == 1)) {
float k = *scale;
@@ -365,7 +394,7 @@
source_p += source_stride;
dest_p += dest_stride;
}
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
}
#endif
}
@@ -377,9 +406,17 @@
float* dest_p,
int dest_stride,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vadd(source1p, source_stride1, source2p,
+ source_stride2, dest_p, dest_stride,
+ frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if ((source_stride1 == 1) && (source_stride2 == 1) && (dest_stride == 1)) {
// If the sourceP address is not 16-byte aligned, the first several frames
// (at most three) should be processed separately.
@@ -506,7 +543,7 @@
source2p += source_stride2;
dest_p += dest_stride;
}
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
}
#endif
}
@@ -518,9 +555,17 @@
float* dest_p,
int dest_stride,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vmul(source1p, source_stride1, source2p,
+ source_stride2, dest_p, dest_stride,
+ frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if ((source_stride1 == 1) && (source_stride2 == 1) && (dest_stride == 1)) {
// If the source1P address is not 16-byte aligned, the first several frames
// (at most three) should be processed separately.
@@ -619,8 +664,15 @@
float* real_dest_p,
float* imag_dest_p,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Zvmul(real1p, imag1p, real2p, imag2p, real_dest_p,
+ imag_dest_p, frames_to_process);
+ return;
+ }
+#endif
unsigned i = 0;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
// Only use the SSE optimization in the very common case that all addresses
// are 16-byte aligned. Otherwise, fall through to the scalar code below.
if (!(reinterpret_cast<uintptr_t>(real1p) & 0x0F) &&
@@ -676,10 +728,17 @@
int source_stride,
float* sum_p,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vsvesq(source_p, source_stride, sum_p,
+ frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
float sum = 0;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if (source_stride == 1) {
// If the sourceP address is not 16-byte aligned, the first several frames
// (at most three) should be processed separately.
@@ -745,10 +804,17 @@
int source_stride,
float* max_p,
size_t frames_to_process) {
+#if defined(ARCH_CPU_X86) && !defined(__SSE2__)
+ if (cpu.has_sse2()) {
+ blink::VectorMath::SSE2::Vmaxmgv(source_p, source_stride, max_p,
+ frames_to_process);
+ return;
+ }
+#endif
int n = frames_to_process;
float max = 0;
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
if (source_stride == 1) {
// If the sourceP address is not 16-byte aligned, the first several frames
// (at most three) should be processed separately.
@@ -837,6 +903,8 @@
*max_p = max;
}
+#ifndef BUILD_ONLY_THE_SSE2_PARTS
+
void Vclip(const float* source_p,
int source_stride,
const float* low_threshold_p,
@@ -894,6 +962,12 @@
}
}
+#endif
+
+#ifdef BUILD_ONLY_THE_SSE2_PARTS
+} // namespace SSE2
+#endif
+
#endif // defined(OS_MACOSX)
} // namespace VectorMath
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMath.h 2017-12-25 14:51:17.547536826 +0100
@@ -27,6 +27,7 @@
#define VectorMath_h
#include <cstddef>
+#include "build/build_config.h"
#include "platform/PlatformExport.h"
#include "platform/wtf/build_config.h"
@@ -97,6 +98,62 @@
int dest_stride,
size_t frames_to_process);
+#ifdef ARCH_CPU_X86
+namespace SSE2 {
+// Vector scalar multiply and then add.
+PLATFORM_EXPORT void Vsma(const float* source_p,
+ int source_stride,
+ const float* scale,
+ float* dest_p,
+ int dest_stride,
+ size_t frames_to_process);
+
+PLATFORM_EXPORT void Vsmul(const float* source_p,
+ int source_stride,
+ const float* scale,
+ float* dest_p,
+ int dest_stride,
+ size_t frames_to_process);
+PLATFORM_EXPORT void Vadd(const float* source1p,
+ int source_stride1,
+ const float* source2p,
+ int source_stride2,
+ float* dest_p,
+ int dest_stride,
+ size_t frames_to_process);
+
+// Finds the maximum magnitude of a float vector.
+PLATFORM_EXPORT void Vmaxmgv(const float* source_p,
+ int source_stride,
+ float* max_p,
+ size_t frames_to_process);
+
+// Sums the squares of a float vector's elements.
+PLATFORM_EXPORT void Vsvesq(const float* source_p,
+ int source_stride,
+ float* sum_p,
+ size_t frames_to_process);
+
+// For an element-by-element multiply of two float vectors.
+PLATFORM_EXPORT void Vmul(const float* source1p,
+ int source_stride1,
+ const float* source2p,
+ int source_stride2,
+ float* dest_p,
+ int dest_stride,
+ size_t frames_to_process);
+
+// Multiplies two complex vectors.
+PLATFORM_EXPORT void Zvmul(const float* real1p,
+ const float* imag1p,
+ const float* real2p,
+ const float* imag2p,
+ float* real_dest_p,
+ float* imag_dest_p,
+ size_t frames_to_process);
+}
+#endif
+
} // namespace VectorMath
} // namespace blink
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMathSSE2.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMathSSE2.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMathSSE2.cpp 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/audio/VectorMathSSE2.cpp 2017-12-25 13:05:24.024939497 +0100
@@ -0,0 +1,2 @@
+#define BUILD_ONLY_THE_SSE2_PARTS
+#include "VectorMath.cpp"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/BUILD.gn 2017-12-26 01:28:56.946048732 +0100
@@ -1693,6 +1693,10 @@
deps += [ ":blink_x86_sse" ]
}
+ if (current_cpu == "x86") {
+ deps += [ ":blink_x86_sse2" ]
+ }
+
if (use_webaudio_ffmpeg) {
include_dirs += [ "//third_party/ffmpeg" ]
deps += [ "//third_party/ffmpeg" ]
@@ -2139,6 +2143,23 @@
}
}
+if (current_cpu == "x86") {
+ source_set("blink_x86_sse2") {
+ sources = [
+ "audio/DirectConvolverSSE2.cpp",
+ "audio/SincResamplerSSE2.cpp",
+ "audio/VectorMathSSE2.cpp",
+ ]
+ cflags = [ "-msse2", "-mfpmath=sse" ]
+ configs += [
+ # TODO(jschuh): crbug.com/167187 fix size_t to int truncations.
+ "//build/config/compiler:no_size_t_to_int_warning",
+ "//third_party/WebKit/Source:config",
+ "//third_party/WebKit/Source:non_test_config",
+ ]
+ }
+}
+
# This source set is used for fuzzers that need an environment similar to unit
# tests.
source_set("blink_fuzzer_test_support") {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/cpu/x86/WebGLImageConversionSSE.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/cpu/x86/WebGLImageConversionSSE.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/cpu/x86/WebGLImageConversionSSE.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/cpu/x86/WebGLImageConversionSSE.h 2017-12-25 17:01:28.182182131 +0100
@@ -7,7 +7,7 @@
#include "build/build_config.h"
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
#include <emmintrin.h>
namespace blink {
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/gpu/WebGLImageConversion.cpp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/gpu/WebGLImageConversion.cpp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/gpu/WebGLImageConversion.cpp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/WebKit/Source/platform/graphics/gpu/WebGLImageConversion.cpp 2017-12-25 17:03:30.477435712 +0100
@@ -444,7 +444,7 @@
const uint32_t* source32 = reinterpret_cast_ptr<const uint32_t*>(source);
uint32_t* destination32 = reinterpret_cast_ptr<uint32_t*>(destination);
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::UnpackOneRowOfBGRA8LittleToRGBA8(source32, destination32,
pixels_per_row);
#endif
@@ -472,7 +472,7 @@
const uint16_t* source,
uint8_t* destination,
unsigned pixels_per_row) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::UnpackOneRowOfRGBA5551LittleToRGBA8(source, destination,
pixels_per_row);
#endif
@@ -502,7 +502,7 @@
const uint16_t* source,
uint8_t* destination,
unsigned pixels_per_row) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::UnpackOneRowOfRGBA4444LittleToRGBA8(source, destination,
pixels_per_row);
#endif
@@ -718,7 +718,7 @@
uint8_t>(const uint8_t* source,
uint8_t* destination,
unsigned pixels_per_row) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::PackOneRowOfRGBA8LittleToR8(source, destination, pixels_per_row);
#endif
#if HAVE(MIPS_MSA_INTRINSICS)
@@ -775,7 +775,7 @@
uint8_t>(const uint8_t* source,
uint8_t* destination,
unsigned pixels_per_row) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::PackOneRowOfRGBA8LittleToRA8(source, destination, pixels_per_row);
#endif
#if HAVE(MIPS_MSA_INTRINSICS)
@@ -887,7 +887,7 @@
uint8_t>(const uint8_t* source,
uint8_t* destination,
unsigned pixels_per_row) {
-#if defined(ARCH_CPU_X86_FAMILY)
+#if (defined(ARCH_CPU_X86) && defined(__SSE2__)) || defined(ARCH_CPU_X86_64)
SIMD::PackOneRowOfRGBA8LittleToRGBA8(source, destination, pixels_per_row);
#endif
#if HAVE(MIPS_MSA_INTRINSICS)
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/webrtc/common_audio/real_fourier.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/webrtc/common_audio/real_fourier.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/third_party/webrtc/common_audio/real_fourier.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/third_party/webrtc/common_audio/real_fourier.cc 2017-12-25 17:05:49.957443890 +0100
@@ -14,6 +14,7 @@
#include "webrtc/common_audio/real_fourier_openmax.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/rtc_base/checks.h"
+#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
namespace webrtc {
@@ -23,7 +24,15 @@
std::unique_ptr<RealFourier> RealFourier::Create(int fft_order) {
#if defined(RTC_USE_OPENMAX_DL)
+#if defined(WEBRTC_ARCH_X86_FAMILY) && !defined(__SSE2__)
+ // x86 CPU detection required.
+ if (WebRtc_GetCPUInfo(kSSE2))
+ return std::unique_ptr<RealFourier>(new RealFourierOpenmax(fft_order));
+ else
+ return std::unique_ptr<RealFourier>(new RealFourierOoura(fft_order));
+#else
return std::unique_ptr<RealFourier>(new RealFourierOpenmax(fft_order));
+#endif
#else
return std::unique_ptr<RealFourier>(new RealFourierOoura(fft_order));
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/BUILD.gn 2017-12-26 01:32:06.842303361 +0100
@@ -116,9 +116,9 @@
v8_experimental_extra_library_files =
[ "//test/cctest/test-experimental-extra.js" ]
- v8_enable_gdbjit =
- ((v8_current_cpu == "x86" || v8_current_cpu == "x64") &&
- (is_linux || is_mac)) || (v8_current_cpu == "ppc64" && is_linux)
+ v8_enable_gdbjit = ((v8_current_cpu == "x86" || v8_current_cpu == "x64" ||
+ v8_current_cpu == "x87") && (is_linux || is_mac)) ||
+ (v8_current_cpu == "ppc64" && is_linux)
# Temporary flag to allow embedders to update their microtasks scopes
# while rolling in a new version of V8.
@@ -161,7 +161,7 @@
include_dirs = [ "." ]
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "BUILDING_V8_SHARED" ]
}
}
@@ -175,14 +175,14 @@
# This config should be applied to code using the libplatform.
config("libplatform_config") {
include_dirs = [ "include" ]
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "USING_V8_PLATFORM_SHARED" ]
}
}
# This config should be applied to code using the libbase.
config("libbase_config") {
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "USING_V8_BASE_SHARED" ]
}
libs = []
@@ -199,7 +199,7 @@
# This config should only be applied to code using V8 and not any V8 code
# itself.
config("external_config") {
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "USING_V8_SHARED" ]
}
include_dirs = [
@@ -434,6 +434,9 @@
cflags += [ "/arch:SSE2" ]
}
}
+ if (v8_current_cpu == "x87") {
+ defines += [ "V8_TARGET_ARCH_X87" ]
+ }
if (v8_current_cpu == "x64") {
defines += [ "V8_TARGET_ARCH_X64" ]
if (is_win) {
@@ -443,6 +446,9 @@
ldflags += [ "/STACK:2097152" ]
}
}
+ if (v8_current_cpu == "x87") {
+ defines += [ "V8_TARGET_ARCH_X87" ]
+ }
if (is_android && v8_android_log_stdout) {
defines += [ "V8_ANDROID_LOG_STDOUT" ]
}
@@ -1040,6 +1046,11 @@
### gcmole(arch:s390) ###
"src/builtins/s390/builtins-s390.cc",
]
+ } else if (v8_current_cpu == "x87") {
+ sources += [
+ ### gcmole(arch:x87) ###
+ "src/builtins/x87/builtins-x87.cc",
+ ]
}
if (!v8_enable_i18n_support) {
@@ -2309,6 +2320,37 @@
"src/s390/simulator-s390.cc",
"src/s390/simulator-s390.h",
]
+ } else if (v8_current_cpu == "x87") {
+ sources += [ ### gcmole(arch:x87) ###
+ "src/compiler/x87/code-generator-x87.cc",
+ "src/compiler/x87/instruction-codes-x87.h",
+ "src/compiler/x87/instruction-scheduler-x87.cc",
+ "src/compiler/x87/instruction-selector-x87.cc",
+ "src/debug/x87/debug-x87.cc",
+ "src/full-codegen/x87/full-codegen-x87.cc",
+ "src/ic/x87/access-compiler-x87.cc",
+ "src/ic/x87/handler-compiler-x87.cc",
+ "src/ic/x87/ic-x87.cc",
+ "src/regexp/x87/regexp-macro-assembler-x87.cc",
+ "src/regexp/x87/regexp-macro-assembler-x87.h",
+ "src/x87/assembler-x87-inl.h",
+ "src/x87/assembler-x87.cc",
+ "src/x87/assembler-x87.h",
+ "src/x87/code-stubs-x87.cc",
+ "src/x87/code-stubs-x87.h",
+ "src/x87/codegen-x87.cc",
+ "src/x87/codegen-x87.h",
+ "src/x87/cpu-x87.cc",
+ "src/x87/deoptimizer-x87.cc",
+ "src/x87/disasm-x87.cc",
+ "src/x87/frames-x87.cc",
+ "src/x87/frames-x87.h",
+ "src/x87/interface-descriptors-x87.cc",
+ "src/x87/macro-assembler-x87.cc",
+ "src/x87/macro-assembler-x87.h",
+ "src/x87/simulator-x87.cc",
+ "src/x87/simulator-x87.h",
+ ]
}
configs = [ ":internal_config" ]
@@ -2420,7 +2462,7 @@
defines = []
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "BUILDING_V8_BASE_SHARED" ]
}
@@ -2530,7 +2572,7 @@
configs = [ ":internal_config_base" ]
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "BUILDING_V8_PLATFORM_SHARED" ]
}
@@ -2676,7 +2718,37 @@
]
}
-if (is_component_build) {
+if (v8_build_shared) {
+ shared_library("v8") {
+ sources = [
+ "src/v8dll-main.cc",
+ ]
+
+ public_deps = [
+ ":v8_base",
+ ":v8_maybe_snapshot",
+ ]
+
+ configs += [ ":internal_config" ]
+
+ public_configs = [ ":external_config" ]
+ }
+
+ group("v8_for_testing") {
+ testonly = true
+
+ public_deps = [
+ ":v8_base",
+ ":v8_maybe_snapshot",
+ ]
+
+ if (v8_use_snapshot) {
+ public_deps += [ ":v8_builtins_generators" ]
+ }
+
+ public_configs = [ ":external_config" ]
+ }
+} else if (is_component_build) {
v8_component("v8") {
sources = [
"src/v8dll-main.cc",
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gni/v8.gni qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gni/v8.gni
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gni/v8.gni 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gni/v8.gni 2017-12-25 18:02:06.095884970 +0100
@@ -42,6 +42,9 @@
# add a dependency on the ICU library.
v8_enable_i18n_support = true
+ # Whether to build V8 as a shared library
+ v8_build_shared = false
+
# Use static libraries instead of source_sets.
v8_static_library = false
}
@@ -56,6 +59,11 @@
v8_enable_backtrace = is_debug && !v8_optimized_debug
}
+if (v8_current_cpu == "x86" || v8_current_cpu == "x87") {
+ # build V8 shared on x86 so we can swap x87 vs. SSE2 builds
+ v8_build_shared = true
+}
+
# Points to // in v8 stand-alone or to //v8/ in chromium. We need absolute
# paths for all configs in templates as they are shared in different
# subdirectories.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gypfiles/standalone.gypi qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gypfiles/standalone.gypi
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gypfiles/standalone.gypi 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gypfiles/standalone.gypi 2017-12-25 17:42:57.200465867 +0100
@@ -262,14 +262,14 @@
# goma doesn't support PDB yet.
'fastbuild%': 1,
}],
- ['((v8_target_arch=="ia32" or v8_target_arch=="x64") and \
+ ['((v8_target_arch=="ia32" or v8_target_arch=="x64" or v8_target_arch=="x87") and \
(OS=="linux" or OS=="mac")) or (v8_target_arch=="ppc64" and OS=="linux")', {
'v8_enable_gdbjit%': 1,
}, {
'v8_enable_gdbjit%': 0,
}],
['(OS=="linux" or OS=="mac") and (target_arch=="ia32" or target_arch=="x64") and \
- v8_target_arch!="x32"', {
+ (v8_target_arch!="x87" and v8_target_arch!="x32")', {
'clang%': 1,
}, {
'clang%': 0,
@@ -1207,7 +1207,7 @@
'-L<(android_libcpp_libs)/arm64-v8a',
],
}],
- ['target_arch=="ia32"', {
+ ['target_arch=="ia32" or target_arch=="x87"', {
# The x86 toolchain currently has problems with stack-protector.
'cflags!': [
'-fstack-protector',
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gypfiles/toolchain.gypi qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gypfiles/toolchain.gypi
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/gypfiles/toolchain.gypi 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/gypfiles/toolchain.gypi 2017-12-25 17:42:57.200465867 +0100
@@ -144,7 +144,7 @@
'host_cxx_is_biarch%': 0,
},
}],
- ['target_arch=="ia32" or target_arch=="x64" or \
+ ['target_arch=="ia32" or target_arch=="x64" or target_arch=="x87" or \
target_arch=="ppc" or target_arch=="ppc64" or target_arch=="s390" or \
target_arch=="s390x" or clang==1', {
'variables': {
@@ -342,6 +342,12 @@
'V8_TARGET_ARCH_IA32',
],
}], # v8_target_arch=="ia32"
+ ['v8_target_arch=="x87"', {
+ 'defines': [
+ 'V8_TARGET_ARCH_X87',
+ ],
+ 'cflags': ['-march=i586'],
+ }], # v8_target_arch=="x87"
['v8_target_arch=="mips" or v8_target_arch=="mipsel" \
or v8_target_arch=="mips64" or v8_target_arch=="mips64el"', {
'target_conditions': [
@@ -1000,8 +1006,9 @@
['(OS=="linux" or OS=="freebsd" or OS=="openbsd" or OS=="solaris" \
or OS=="netbsd" or OS=="mac" or OS=="android" or OS=="qnx") and \
(v8_target_arch=="arm" or v8_target_arch=="ia32" or \
- v8_target_arch=="mips" or v8_target_arch=="mipsel" or \
- v8_target_arch=="ppc" or v8_target_arch=="s390")', {
+ v8_target_arch=="x87" or v8_target_arch=="mips" or \
+ v8_target_arch=="mipsel" or v8_target_arch=="ppc" or \
+ v8_target_arch=="s390")', {
'target_conditions': [
['_toolset=="host"', {
'conditions': [
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/Makefile qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/Makefile
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/Makefile 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/Makefile 2017-12-25 17:42:57.200465867 +0100
@@ -255,13 +255,14 @@
# Architectures and modes to be compiled. Consider these to be internal
# variables, don't override them (use the targets instead).
-ARCHES = ia32 x64 arm arm64 mips mipsel mips64 mips64el ppc ppc64 s390 s390x
-ARCHES32 = ia32 arm mips mipsel ppc s390
+ARCHES = ia32 x64 arm arm64 mips mipsel mips64 mips64el x87 ppc ppc64 s390 \
+ s390x
+ARCHES32 = ia32 arm mips mipsel x87 ppc s390
DEFAULT_ARCHES = ia32 x64 arm
MODES = release debug optdebug
DEFAULT_MODES = release debug
ANDROID_ARCHES = android_ia32 android_x64 android_arm android_arm64 \
- android_mipsel
+ android_mipsel android_x87
# List of files that trigger Makefile regeneration:
GYPFILES = third_party/icu/icu.gypi third_party/icu/icu.gyp \
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/assembler.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/assembler.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/assembler.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/assembler.cc 2017-12-25 17:42:57.201465852 +0100
@@ -85,6 +85,8 @@
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_S390
#include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT
+#elif V8_TARGET_ARCH_X87
+#include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
#else // Unknown architecture.
#error "Unknown architecture."
#endif // Target architecture.
@@ -1318,6 +1320,8 @@
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
#elif V8_TARGET_ARCH_S390
function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState);
+#elif V8_TARGET_ARCH_X87
+ function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
#else
UNREACHABLE();
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/assembler-inl.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/assembler-inl.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/assembler-inl.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/assembler-inl.h 2017-12-25 17:42:57.201465852 +0100
@@ -23,6 +23,8 @@
#include "src/mips64/assembler-mips64-inl.h"
#elif V8_TARGET_ARCH_S390
#include "src/s390/assembler-s390-inl.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/assembler-x87-inl.h"
#else
#error Unknown architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/base/build_config.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/base/build_config.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/base/build_config.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/base/build_config.h 2017-12-25 17:42:57.201465852 +0100
@@ -76,9 +76,9 @@
// Target architecture detection. This may be set externally. If not, detect
// in the same way as the host architecture, that is, target the native
// environment as presented by the compiler.
-#if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && \
- !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 && \
- !V8_TARGET_ARCH_PPC && !V8_TARGET_ARCH_S390
+#if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_X87 && \
+ !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \
+ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_PPC && !V8_TARGET_ARCH_S390
#if defined(_M_X64) || defined(__x86_64__)
#define V8_TARGET_ARCH_X64 1
#elif defined(_M_IX86) || defined(__i386__)
@@ -129,6 +129,8 @@
#else
#define V8_TARGET_ARCH_32_BIT 1
#endif
+#elif V8_TARGET_ARCH_X87
+#define V8_TARGET_ARCH_32_BIT 1
#else
#error Unknown target architecture pointer size
#endif
@@ -179,6 +181,8 @@
#else
#define V8_TARGET_LITTLE_ENDIAN 1
#endif
+#elif V8_TARGET_ARCH_X87
+#define V8_TARGET_LITTLE_ENDIAN 1
#elif __BIG_ENDIAN__ // FOR PPCGR on AIX
#define V8_TARGET_BIG_ENDIAN 1
#elif V8_TARGET_ARCH_PPC_LE
@@ -195,7 +199,8 @@
#error Unknown target architecture endianness
#endif
-#if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X64)
+#if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X64) || \
+ defined(V8_TARGET_ARCH_X87)
#define V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK 1
#else
#define V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK 0
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/builtins/x87/builtins-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/builtins/x87/builtins-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/builtins/x87/builtins-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/builtins/x87/builtins-x87.cc 2017-12-27 22:57:11.363055815 +0100
@@ -0,0 +1,3142 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/code-factory.h"
+#include "src/codegen.h"
+#include "src/deoptimizer.h"
+#include "src/full-codegen/full-codegen.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
+ ExitFrameType exit_frame_type) {
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments excluding receiver
+ // -- edi : target
+ // -- edx : new.target
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -- ...
+ // -- esp[4 * argc] : first argument
+ // -- esp[4 * (argc +1)] : receiver
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // Make sure we operate in the context of the called function (for example
+ // ConstructStubs implemented in C++ will be run in the context of the caller
+ // instead of the callee, due to the way that [[Construct]] is defined for
+ // ordinary functions).
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ // JumpToExternalReference expects eax to contain the number of arguments
+ // including the receiver and the extra arguments.
+ const int num_extra_args = 3;
+ __ add(eax, Immediate(num_extra_args + 1));
+
+ // Insert extra arguments.
+ __ PopReturnAddressTo(ecx);
+ __ SmiTag(eax);
+ __ Push(eax);
+ __ SmiUntag(eax);
+ __ Push(edi);
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+
+ __ JumpToExternalReference(ExternalReference(address, masm->isolate()),
+ exit_frame_type == BUILTIN_EXIT);
+}
+
+static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
+ Runtime::FunctionId function_id) {
+ // ----------- S t a t e -------------
+ // -- eax : argument count (preserved for callee)
+ // -- edx : new target (preserved for callee)
+ // -- edi : target function (preserved for callee)
+ // -----------------------------------
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ // Push the number of arguments to the callee.
+ __ SmiTag(eax);
+ __ push(eax);
+ // Push a copy of the target function and the new target.
+ __ push(edi);
+ __ push(edx);
+ // Function is also the parameter to the runtime call.
+ __ push(edi);
+
+ __ CallRuntime(function_id, 1);
+ __ mov(ebx, eax);
+
+ // Restore target function and new target.
+ __ pop(edx);
+ __ pop(edi);
+ __ pop(eax);
+ __ SmiUntag(eax);
+ }
+
+ __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
+ __ jmp(ebx);
+}
+
+static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
+ __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset));
+ __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
+ __ jmp(ebx);
+}
+
+void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
+ // Checking whether the queued function is ready for install is optional,
+ // since we come across interrupts and stack checks elsewhere. However,
+ // not checking may delay installing ready functions, and always checking
+ // would be quite expensive. A good compromise is to first check against
+ // stack limit as a cue for an interrupt signal.
+ Label ok;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(masm->isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &ok, Label::kNear);
+
+ GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
+
+ __ bind(&ok);
+ GenerateTailCallToSharedCode(masm);
+}
+
+namespace {
+
+void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
+ bool create_implicit_receiver,
+ bool check_derived_construct) {
+ // ----------- S t a t e -------------
+ // -- eax: number of arguments
+ // -- esi: context
+ // -- edi: constructor function
+ // -- edx: new target
+ // -----------------------------------
+
+ // Enter a construct frame.
+ {
+ FrameScope scope(masm, StackFrame::CONSTRUCT);
+
+ // Preserve the incoming parameters on the stack.
+ __ SmiTag(eax);
+ __ push(esi);
+ __ push(eax);
+
+ if (create_implicit_receiver) {
+ // Allocate the new receiver object.
+ __ Push(edi);
+ __ Push(edx);
+ __ Call(Builtins::CallableFor(masm->isolate(), Builtins::kFastNewObject)
+ .code(),
+ RelocInfo::CODE_TARGET);
+ __ mov(ebx, eax);
+ __ Pop(edx);
+ __ Pop(edi);
+
+ // ----------- S t a t e -------------
+ // -- edi: constructor function
+ // -- ebx: newly allocated object
+ // -- edx: new target
+ // -----------------------------------
+
+ // Retrieve smi-tagged arguments count from the stack.
+ __ mov(eax, Operand(esp, 0));
+ }
+
+ __ SmiUntag(eax);
+
+ if (create_implicit_receiver) {
+ // Push the allocated receiver to the stack. We need two copies
+ // because we may have to return the original one and the calling
+ // conventions dictate that the called function pops the receiver.
+ __ push(ebx);
+ __ push(ebx);
+ } else {
+ __ PushRoot(Heap::kTheHoleValueRootIndex);
+ }
+
+ // Set up pointer to last argument.
+ __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
+
+ // Copy arguments and receiver to the expression stack.
+ Label loop, entry;
+ __ mov(ecx, eax);
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ push(Operand(ebx, ecx, times_4, 0));
+ __ bind(&entry);
+ __ dec(ecx);
+ __ j(greater_equal, &loop);
+
+ // Call the function.
+ ParameterCount actual(eax);
+ __ InvokeFunction(edi, edx, actual, CALL_FUNCTION,
+ CheckDebugStepCallWrapper());
+
+ // Store offset of return address for deoptimizer.
+ if (create_implicit_receiver && !is_api_function) {
+ masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
+ }
+
+ // Restore context from the frame.
+ __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
+
+ if (create_implicit_receiver) {
+ // If the result is an object (in the ECMA sense), we should get rid
+ // of the receiver and use the result; see ECMA-262 section 13.2.2-7
+ // on page 74.
+ Label use_receiver, exit;
+
+ // If the result is a smi, it is *not* an object in the ECMA sense.
+ __ JumpIfSmi(eax, &use_receiver, Label::kNear);
+
+ // If the type of the result (stored in its map) is less than
+ // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(above_equal, &exit, Label::kNear);
+
+ // Throw away the result of the constructor invocation and use the
+ // on-stack receiver as the result.
+ __ bind(&use_receiver);
+ __ mov(eax, Operand(esp, 0));
+
+ // Restore the arguments count and leave the construct frame. The
+ // arguments count is stored below the receiver.
+ __ bind(&exit);
+ __ mov(ebx, Operand(esp, 1 * kPointerSize));
+ } else {
+ __ mov(ebx, Operand(esp, 0));
+ }
+
+ // Leave construct frame.
+ }
+
+ // ES6 9.2.2. Step 13+
+ // Check that the result is not a Smi, indicating that the constructor result
+ // from a derived class is neither undefined nor an Object.
+ if (check_derived_construct) {
+ Label dont_throw;
+ __ JumpIfNotSmi(eax, &dont_throw);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
+ }
+ __ bind(&dont_throw);
+ }
+
+ // Remove caller arguments from the stack and return.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+ __ pop(ecx);
+ __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
+ __ push(ecx);
+ if (create_implicit_receiver) {
+ __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
+ }
+ __ ret(0);
+}
+
+} // namespace
+
+void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
+ Generate_JSConstructStubHelper(masm, false, true, false);
+}
+
+void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
+ Generate_JSConstructStubHelper(masm, true, false, false);
+}
+
+void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
+ Generate_JSConstructStubHelper(masm, false, false, false);
+}
+
+void Builtins::Generate_JSBuiltinsConstructStubForDerived(
+ MacroAssembler* masm) {
+ Generate_JSConstructStubHelper(masm, false, false, true);
+}
+
+void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edi);
+ __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
+}
+
+enum IsTagged { kEaxIsSmiTagged, kEaxIsUntaggedInt };
+
+// Clobbers ecx, edx, edi; preserves all other registers.
+static void Generate_CheckStackOverflow(MacroAssembler* masm,
+ IsTagged eax_is_tagged) {
+ // eax : the number of items to be pushed to the stack
+ //
+ // Check the stack for overflow. We are not trying to catch
+ // interruptions (e.g. debug break and preemption) here, so the "real stack
+ // limit" is checked.
+ Label okay;
+ ExternalReference real_stack_limit =
+ ExternalReference::address_of_real_stack_limit(masm->isolate());
+ __ mov(edi, Operand::StaticVariable(real_stack_limit));
+ // Make ecx the space we have left. The stack might already be overflowed
+ // here which will cause ecx to become negative.
+ __ mov(ecx, esp);
+ __ sub(ecx, edi);
+ // Make edx the space we need for the array when it is unrolled onto the
+ // stack.
+ __ mov(edx, eax);
+ int smi_tag = eax_is_tagged == kEaxIsSmiTagged ? kSmiTagSize : 0;
+ __ shl(edx, kPointerSizeLog2 - smi_tag);
+ // Check if the arguments will overflow the stack.
+ __ cmp(ecx, edx);
+ __ j(greater, &okay); // Signed comparison.
+
+ // Out of stack space.
+ __ CallRuntime(Runtime::kThrowStackOverflow);
+
+ __ bind(&okay);
+}
+
+static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
+ bool is_construct) {
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Setup the context (we need to use the caller context from the isolate).
+ ExternalReference context_address(IsolateAddressId::kContextAddress,
+ masm->isolate());
+ __ mov(esi, Operand::StaticVariable(context_address));
+
+ // Load the previous frame pointer (ebx) to access C arguments
+ __ mov(ebx, Operand(ebp, 0));
+
+ // Push the function and the receiver onto the stack.
+ __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
+ __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
+
+ // Load the number of arguments and setup pointer to the arguments.
+ __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
+ __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
+
+ // Check if we have enough stack space to push all arguments.
+ // Expects argument count in eax. Clobbers ecx, edx, edi.
+ Generate_CheckStackOverflow(masm, kEaxIsUntaggedInt);
+
+ // Copy arguments to the stack in a loop.
+ Label loop, entry;
+ __ Move(ecx, Immediate(0));
+ __ jmp(&entry, Label::kNear);
+ __ bind(&loop);
+ __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
+ __ push(Operand(edx, 0)); // dereference handle
+ __ inc(ecx);
+ __ bind(&entry);
+ __ cmp(ecx, eax);
+ __ j(not_equal, &loop);
+
+ // Load the previous frame pointer (ebx) to access C arguments
+ __ mov(ebx, Operand(ebp, 0));
+
+ // Get the new.target and function from the frame.
+ __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset));
+ __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
+
+ // Invoke the code.
+ Handle<Code> builtin = is_construct
+ ? masm->isolate()->builtins()->Construct()
+ : masm->isolate()->builtins()->Call();
+ __ Call(builtin, RelocInfo::CODE_TARGET);
+
+ // Exit the internal frame. Notice that this also removes the empty.
+ // context and the function left on the stack by the code
+ // invocation.
+ }
+ __ ret(kPointerSize); // Remove receiver.
+}
+
+void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
+ Generate_JSEntryTrampolineHelper(masm, false);
+}
+
+void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
+ Generate_JSEntryTrampolineHelper(masm, true);
+}
+
+// static
+void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the value to pass to the generator
+ // -- ebx : the JSGeneratorObject to resume
+ // -- edx : the resume mode (tagged)
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ AssertGeneratorObject(ebx);
+
+ // Store input value into generator object.
+ __ mov(FieldOperand(ebx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
+ __ RecordWriteField(ebx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
+ kDontSaveFPRegs);
+
+ // Store resume mode into generator object.
+ __ mov(FieldOperand(ebx, JSGeneratorObject::kResumeModeOffset), edx);
+
+ // Load suspended function and context.
+ __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ // Flood function if we are stepping.
+ Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
+ Label stepping_prepared;
+ ExternalReference debug_hook =
+ ExternalReference::debug_hook_on_function_call_address(masm->isolate());
+ __ cmpb(Operand::StaticVariable(debug_hook), Immediate(0));
+ __ j(not_equal, &prepare_step_in_if_stepping);
+
+ // Flood function if we need to continue stepping in the suspended generator.
+ ExternalReference debug_suspended_generator =
+ ExternalReference::debug_suspended_generator_address(masm->isolate());
+ __ cmp(ebx, Operand::StaticVariable(debug_suspended_generator));
+ __ j(equal, &prepare_step_in_suspended_generator);
+ __ bind(&stepping_prepared);
+
+ // Pop return address.
+ __ PopReturnAddressTo(eax);
+
+ // Push receiver.
+ __ Push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset));
+
+ // ----------- S t a t e -------------
+ // -- eax : return address
+ // -- ebx : the JSGeneratorObject to resume
+ // -- edx : the resume mode (tagged)
+ // -- edi : generator function
+ // -- esi : generator context
+ // -- esp[0] : generator receiver
+ // -----------------------------------
+
+ // Push holes for arguments to generator function. Since the parser forced
+ // context allocation for any variables in generators, the actual argument
+ // values have already been copied into the context and these dummy values
+ // will never be used.
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx,
+ FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
+ {
+ Label done_loop, loop;
+ __ bind(&loop);
+ __ sub(ecx, Immediate(1));
+ __ j(carry, &done_loop, Label::kNear);
+ __ PushRoot(Heap::kTheHoleValueRootIndex);
+ __ jmp(&loop);
+ __ bind(&done_loop);
+ }
+
+ // Underlying function needs to have bytecode available.
+ if (FLAG_debug_code) {
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
+ __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
+ __ Assert(equal, kMissingBytecodeArray);
+ }
+
+ // Resume (Ignition/TurboFan) generator object.
+ {
+ __ PushReturnAddressFrom(eax);
+ __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(eax,
+ FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
+ // We abuse new.target both to indicate that this is a resume call and to
+ // pass in the generator object. In ordinary calls, new.target is always
+ // undefined because generator functions are non-constructable.
+ __ mov(edx, ebx);
+ __ jmp(FieldOperand(edi, JSFunction::kCodeEntryOffset));
+ }
+
+ __ bind(&prepare_step_in_if_stepping);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(ebx);
+ __ Push(edx);
+ __ Push(edi);
+ __ CallRuntime(Runtime::kDebugOnFunctionCall);
+ __ Pop(edx);
+ __ Pop(ebx);
+ __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
+ }
+ __ jmp(&stepping_prepared);
+
+ __ bind(&prepare_step_in_suspended_generator);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(ebx);
+ __ Push(edx);
+ __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
+ __ Pop(edx);
+ __ Pop(ebx);
+ __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
+ }
+ __ jmp(&stepping_prepared);
+}
+
+static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
+ Register scratch2) {
+ Register args_count = scratch1;
+ Register return_pc = scratch2;
+
+ // Get the arguments + reciever count.
+ __ mov(args_count,
+ Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
+ __ mov(args_count,
+ FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
+
+ // Leave the frame (also dropping the register file).
+ __ leave();
+
+ // Drop receiver + arguments.
+ __ pop(return_pc);
+ __ add(esp, args_count);
+ __ push(return_pc);
+}
+
+// Generate code for entering a JS function with the interpreter.
+// On entry to the function the receiver and arguments have been pushed on the
+// stack left to right. The actual argument count matches the formal parameter
+// count expected by the function.
+//
+// The live registers are:
+// o edi: the JS function object being called
+// o edx: the new target
+// o esi: our context
+// o ebp: the caller's frame pointer
+// o esp: stack pointer (pointing to return address)
+//
+// The function builds an interpreter frame. See InterpreterFrameConstants in
+// frames.h for its layout.
+void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // MANUAL indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done below).
+ FrameScope frame_scope(masm, StackFrame::MANUAL);
+ __ push(ebp); // Caller's frame pointer.
+ __ mov(ebp, esp);
+ __ push(esi); // Callee's context.
+ __ push(edi); // Callee's JS function.
+ __ push(edx); // Callee's new target.
+
+ // Get the bytecode array from the function object (or from the DebugInfo if
+ // it is present) and load it into kInterpreterBytecodeArrayRegister.
+ __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ Label load_debug_bytecode_array, bytecode_array_loaded;
+ __ JumpIfNotSmi(FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset),
+ &load_debug_bytecode_array);
+ __ mov(kInterpreterBytecodeArrayRegister,
+ FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
+ __ bind(&bytecode_array_loaded);
+
+ // Check whether we should continue to use the interpreter.
+ // TODO(rmcilroy) Remove self healing once liveedit only has to deal with
+ // Ignition bytecode.
+ Label switch_to_different_code_kind;
+ __ Move(ecx, masm->CodeObject()); // Self-reference to this code.
+ __ cmp(ecx, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
+ __ j(not_equal, &switch_to_different_code_kind);
+
+ // Increment invocation count for the function.
+ __ EmitLoadFeedbackVector(ecx);
+ __ add(
+ FieldOperand(ecx, FeedbackVector::kInvocationCountIndex * kPointerSize +
+ FeedbackVector::kHeaderSize),
+ Immediate(Smi::FromInt(1)));
+
+ // Check function data field is actually a BytecodeArray object.
+ if (FLAG_debug_code) {
+ __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
+ __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
+ eax);
+ __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
+ }
+
+ // Reset code age.
+ __ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister,
+ BytecodeArray::kBytecodeAgeOffset),
+ Immediate(BytecodeArray::kNoAgeBytecodeAge));
+
+ // Push bytecode array.
+ __ push(kInterpreterBytecodeArrayRegister);
+ // Push Smi tagged initial bytecode array offset.
+ __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
+
+ // Allocate the local and temporary register file on the stack.
+ {
+ // Load frame size from the BytecodeArray object.
+ __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister,
+ BytecodeArray::kFrameSizeOffset));
+
+ // Do a stack check to ensure we don't go over the limit.
+ Label ok;
+ __ mov(ecx, esp);
+ __ sub(ecx, ebx);
+ ExternalReference stack_limit =
+ ExternalReference::address_of_real_stack_limit(masm->isolate());
+ __ cmp(ecx, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &ok);
+ __ CallRuntime(Runtime::kThrowStackOverflow);
+ __ bind(&ok);
+
+ // If ok, push undefined as the initial value for all register file entries.
+ Label loop_header;
+ Label loop_check;
+ __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value()));
+ __ jmp(&loop_check);
+ __ bind(&loop_header);
+ // TODO(rmcilroy): Consider doing more than one push per loop iteration.
+ __ push(eax);
+ // Continue loop if not done.
+ __ bind(&loop_check);
+ __ sub(ebx, Immediate(kPointerSize));
+ __ j(greater_equal, &loop_header);
+ }
+
+ // Load accumulator, bytecode offset and dispatch table into registers.
+ __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
+ __ mov(kInterpreterBytecodeOffsetRegister,
+ Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
+ __ mov(kInterpreterDispatchTableRegister,
+ Immediate(ExternalReference::interpreter_dispatch_table_address(
+ masm->isolate())));
+
+ // Dispatch to the first bytecode handler for the function.
+ __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
+ kInterpreterBytecodeOffsetRegister, times_1, 0));
+ __ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx,
+ times_pointer_size, 0));
+ __ call(ebx);
+ masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
+
+ // The return value is in eax.
+ LeaveInterpreterFrame(masm, ebx, ecx);
+ __ ret(0);
+
+ // Load debug copy of the bytecode array.
+ __ bind(&load_debug_bytecode_array);
+ Register debug_info = kInterpreterBytecodeArrayRegister;
+ __ mov(debug_info, FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset));
+ __ mov(kInterpreterBytecodeArrayRegister,
+ FieldOperand(debug_info, DebugInfo::kDebugBytecodeArrayOffset));
+ __ jmp(&bytecode_array_loaded);
+
+ // If the shared code is no longer this entry trampoline, then the underlying
+ // function has been switched to a different kind of code and we heal the
+ // closure by switching the code entry field over to the new code as well.
+ __ bind(&switch_to_different_code_kind);
+ __ pop(edx); // Callee's new target.
+ __ pop(edi); // Callee's JS function.
+ __ pop(esi); // Callee's context.
+ __ leave(); // Leave the frame so we can tail call.
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ mov(FieldOperand(edi, JSFunction::kCodeEntryOffset), ecx);
+ __ RecordWriteCodeEntryField(edi, ecx, ebx);
+ __ jmp(ecx);
+}
+
+static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
+ Register scratch1, Register scratch2,
+ Label* stack_overflow,
+ bool include_receiver = false) {
+ // Check the stack for overflow. We are not trying to catch
+ // interruptions (e.g. debug break and preemption) here, so the "real stack
+ // limit" is checked.
+ ExternalReference real_stack_limit =
+ ExternalReference::address_of_real_stack_limit(masm->isolate());
+ __ mov(scratch1, Operand::StaticVariable(real_stack_limit));
+ // Make scratch2 the space we have left. The stack might already be overflowed
+ // here which will cause scratch2 to become negative.
+ __ mov(scratch2, esp);
+ __ sub(scratch2, scratch1);
+ // Make scratch1 the space we need for the array when it is unrolled onto the
+ // stack.
+ __ mov(scratch1, num_args);
+ if (include_receiver) {
+ __ add(scratch1, Immediate(1));
+ }
+ __ shl(scratch1, kPointerSizeLog2);
+ // Check if the arguments will overflow the stack.
+ __ cmp(scratch2, scratch1);
+ __ j(less_equal, stack_overflow); // Signed comparison.
+}
+
+static void Generate_InterpreterPushArgs(MacroAssembler* masm,
+ Register array_limit,
+ Register start_address) {
+ // ----------- S t a t e -------------
+ // -- start_address : Pointer to the last argument in the args array.
+ // -- array_limit : Pointer to one before the first argument in the
+ // args array.
+ // -----------------------------------
+ Label loop_header, loop_check;
+ __ jmp(&loop_check);
+ __ bind(&loop_header);
+ __ Push(Operand(start_address, 0));
+ __ sub(start_address, Immediate(kPointerSize));
+ __ bind(&loop_check);
+ __ cmp(start_address, array_limit);
+ __ j(greater, &loop_header, Label::kNear);
+}
+
+// static
+void Builtins::Generate_InterpreterPushArgsThenCallImpl(
+ MacroAssembler* masm, TailCallMode tail_call_mode,
+ InterpreterPushArgsMode mode) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- ebx : the address of the first argument to be pushed. Subsequent
+ // arguments should be consecutive above this, in the same order as
+ // they are to be pushed onto the stack.
+ // -- edi : the target to call (can be any Object).
+ // -----------------------------------
+ Label stack_overflow;
+ // Compute the expected number of arguments.
+ __ mov(ecx, eax);
+ __ add(ecx, Immediate(1)); // Add one for receiver.
+
+ // Add a stack check before pushing the arguments. We need an extra register
+ // to perform a stack check. So push it onto the stack temporarily. This
+ // might cause stack overflow, but it will be detected by the check.
+ __ Push(edi);
+ Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow);
+ __ Pop(edi);
+
+ // Pop return address to allow tail-call after pushing arguments.
+ __ Pop(edx);
+
+ // Find the address of the last argument.
+ __ shl(ecx, kPointerSizeLog2);
+ __ neg(ecx);
+ __ add(ecx, ebx);
+ Generate_InterpreterPushArgs(masm, ecx, ebx);
+
+ // Call the target.
+ __ Push(edx); // Re-push return address.
+
+ if (mode == InterpreterPushArgsMode::kJSFunction) {
+ __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
+ tail_call_mode),
+ RelocInfo::CODE_TARGET);
+ } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
+ __ Jump(masm->isolate()->builtins()->CallWithSpread(),
+ RelocInfo::CODE_TARGET);
+ } else {
+ __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
+ tail_call_mode),
+ RelocInfo::CODE_TARGET);
+ }
+
+ __ bind(&stack_overflow);
+ {
+ // Pop the temporary registers, so that return address is on top of stack.
+ __ Pop(edi);
+
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+
+ // This should be unreachable.
+ __ int3();
+ }
+}
+
+namespace {
+
+// This function modified start_addr, and only reads the contents of num_args
+// register. scratch1 and scratch2 are used as temporary registers. Their
+// original values are restored after the use.
+void Generate_InterpreterPushArgsThenReturnAddress(
+ MacroAssembler* masm, Register num_args, Register start_addr,
+ Register scratch1, Register scratch2, bool receiver_in_args,
+ int num_slots_above_ret_addr, Label* stack_overflow) {
+ // We have to move return address and the temporary registers above it
+ // before we can copy arguments onto the stack. To achieve this:
+ // Step 1: Increment the stack pointer by num_args + 1 (for receiver).
+ // Step 2: Move the return address and values above it to the top of stack.
+ // Step 3: Copy the arguments into the correct locations.
+ // current stack =====> required stack layout
+ // | | | scratch1 | (2) <-- esp(1)
+ // | | | .... | (2)
+ // | | | scratch-n | (2)
+ // | | | return addr | (2)
+ // | | | arg N | (3)
+ // | scratch1 | <-- esp | .... |
+ // | .... | | arg 0 |
+ // | scratch-n | | arg 0 |
+ // | return addr | | receiver slot |
+
+ // Check for stack overflow before we increment the stack pointer.
+ Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2,
+ stack_overflow, true);
+
+// Step 1 - Update the stack pointer. scratch1 already contains the required
+// increment to the stack. i.e. num_args + 1 stack slots. This is computed in
+// the Generate_StackOverflowCheck.
+
+#ifdef _MSC_VER
+ // TODO(mythria): Move it to macro assembler.
+ // In windows, we cannot increment the stack size by more than one page
+ // (mimimum page size is 4KB) without accessing at least one byte on the
+ // page. Check this:
+ // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
+ const int page_size = 4 * 1024;
+ Label check_offset, update_stack_pointer;
+ __ bind(&check_offset);
+ __ cmp(scratch1, page_size);
+ __ j(less, &update_stack_pointer);
+ __ sub(esp, Immediate(page_size));
+ // Just to touch the page, before we increment further.
+ __ mov(Operand(esp, 0), Immediate(0));
+ __ sub(scratch1, Immediate(page_size));
+ __ jmp(&check_offset);
+ __ bind(&update_stack_pointer);
+#endif
+
+ __ sub(esp, scratch1);
+
+ // Step 2 move return_address and slots above it to the correct locations.
+ // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
+ // basically when the source and destination overlap. We at least need one
+ // extra slot for receiver, so no extra checks are required to avoid copy.
+ for (int i = 0; i < num_slots_above_ret_addr + 1; i++) {
+ __ mov(scratch1,
+ Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize));
+ __ mov(Operand(esp, i * kPointerSize), scratch1);
+ }
+
+ // Step 3 copy arguments to correct locations.
+ if (receiver_in_args) {
+ __ mov(scratch1, num_args);
+ __ add(scratch1, Immediate(1));
+ } else {
+ // Slot meant for receiver contains return address. Reset it so that
+ // we will not incorrectly interpret return address as an object.
+ __ mov(Operand(esp, num_args, times_pointer_size,
+ (num_slots_above_ret_addr + 1) * kPointerSize),
+ Immediate(0));
+ __ mov(scratch1, num_args);
+ }
+
+ Label loop_header, loop_check;
+ __ jmp(&loop_check);
+ __ bind(&loop_header);
+ __ mov(scratch2, Operand(start_addr, 0));
+ __ mov(Operand(esp, scratch1, times_pointer_size,
+ num_slots_above_ret_addr * kPointerSize),
+ scratch2);
+ __ sub(start_addr, Immediate(kPointerSize));
+ __ sub(scratch1, Immediate(1));
+ __ bind(&loop_check);
+ __ cmp(scratch1, Immediate(0));
+ __ j(greater, &loop_header, Label::kNear);
+}
+
+} // end anonymous namespace
+
+// static
+void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
+ MacroAssembler* masm, InterpreterPushArgsMode mode) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the new target
+ // -- edi : the constructor
+ // -- ebx : allocation site feedback (if available or undefined)
+ // -- ecx : the address of the first argument to be pushed. Subsequent
+ // arguments should be consecutive above this, in the same order as
+ // they are to be pushed onto the stack.
+ // -----------------------------------
+ Label stack_overflow;
+ // We need two scratch registers. Push edi and edx onto stack.
+ __ Push(edi);
+ __ Push(edx);
+
+ // Push arguments and move return address to the top of stack.
+ // The eax register is readonly. The ecx register will be modified. The edx
+ // and edi registers will be modified but restored to their original values.
+ Generate_InterpreterPushArgsThenReturnAddress(masm, eax, ecx, edx, edi, false,
+ 2, &stack_overflow);
+
+ // Restore edi and edx
+ __ Pop(edx);
+ __ Pop(edi);
+
+ __ AssertUndefinedOrAllocationSite(ebx);
+ if (mode == InterpreterPushArgsMode::kJSFunction) {
+ // Tail call to the function-specific construct stub (still in the caller
+ // context at this point).
+ __ AssertFunction(edi);
+
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+ } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
+ // Call the constructor with unmodified eax, edi, edx values.
+ __ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
+ RelocInfo::CODE_TARGET);
+ } else {
+ DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
+ // Call the constructor with unmodified eax, edi, edx values.
+ __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+ }
+
+ __ bind(&stack_overflow);
+ {
+ // Pop the temporary registers, so that return address is on top of stack.
+ __ Pop(edx);
+ __ Pop(edi);
+
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+
+ // This should be unreachable.
+ __ int3();
+ }
+}
+
+// static
+void Builtins::Generate_InterpreterPushArgsThenConstructArray(
+ MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the target to call checked to be Array function.
+ // -- ebx : the allocation site feedback
+ // -- ecx : the address of the first argument to be pushed. Subsequent
+ // arguments should be consecutive above this, in the same order as
+ // they are to be pushed onto the stack.
+ // -----------------------------------
+ Label stack_overflow;
+ // We need two scratch registers. Register edi is available, push edx onto
+ // stack.
+ __ Push(edx);
+
+ // Push arguments and move return address to the top of stack.
+ // The eax register is readonly. The ecx register will be modified. The edx
+ // and edi registers will be modified but restored to their original values.
+ Generate_InterpreterPushArgsThenReturnAddress(masm, eax, ecx, edx, edi, true,
+ 1, &stack_overflow);
+
+ // Restore edx.
+ __ Pop(edx);
+
+ // Array constructor expects constructor in edi. It is same as edx here.
+ __ Move(edi, edx);
+
+ ArrayConstructorStub stub(masm->isolate());
+ __ TailCallStub(&stub);
+
+ __ bind(&stack_overflow);
+ {
+ // Pop the temporary registers, so that return address is on top of stack.
+ __ Pop(edx);
+
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+
+ // This should be unreachable.
+ __ int3();
+ }
+}
+
+static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
+ // Set the return address to the correct point in the interpreter entry
+ // trampoline.
+ Smi* interpreter_entry_return_pc_offset(
+ masm->isolate()->heap()->interpreter_entry_return_pc_offset());
+ DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
+ __ Move(ebx, masm->isolate()->builtins()->InterpreterEntryTrampoline());
+ __ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() +
+ Code::kHeaderSize - kHeapObjectTag));
+ __ push(ebx);
+
+ // Initialize the dispatch table register.
+ __ mov(kInterpreterDispatchTableRegister,
+ Immediate(ExternalReference::interpreter_dispatch_table_address(
+ masm->isolate())));
+
+ // Get the bytecode array pointer from the frame.
+ __ mov(kInterpreterBytecodeArrayRegister,
+ Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
+
+ if (FLAG_debug_code) {
+ // Check function data field is actually a BytecodeArray object.
+ __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
+ __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
+ ebx);
+ __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
+ }
+
+ // Get the target bytecode offset from the frame.
+ __ mov(kInterpreterBytecodeOffsetRegister,
+ Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
+ __ SmiUntag(kInterpreterBytecodeOffsetRegister);
+
+ // Dispatch to the target bytecode.
+ __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
+ kInterpreterBytecodeOffsetRegister, times_1, 0));
+ __ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx,
+ times_pointer_size, 0));
+ __ jmp(ebx);
+}
+
+void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
+ // Advance the current bytecode offset stored within the given interpreter
+ // stack frame. This simulates what all bytecode handlers do upon completion
+ // of the underlying operation.
+ __ mov(ebx, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
+ __ mov(edx, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(kInterpreterAccumulatorRegister);
+ __ Push(ebx); // First argument is the bytecode array.
+ __ Push(edx); // Second argument is the bytecode offset.
+ __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
+ __ Move(edx, eax); // Result is the new bytecode offset.
+ __ Pop(kInterpreterAccumulatorRegister);
+ }
+ __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), edx);
+
+ Generate_InterpreterEnterBytecode(masm);
+}
+
+void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
+ Generate_InterpreterEnterBytecode(masm);
+}
+
+void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argument count (preserved for callee)
+ // -- edx : new target (preserved for callee)
+ // -- edi : target function (preserved for callee)
+ // -----------------------------------
+ // First lookup code, maybe we don't need to compile!
+ Label gotta_call_runtime, gotta_call_runtime_no_stack;
+ Label try_shared;
+ Label loop_top, loop_bottom;
+
+ Register closure = edi;
+ Register new_target = edx;
+ Register argument_count = eax;
+
+ // Do we have a valid feedback vector?
+ __ mov(ebx, FieldOperand(closure, JSFunction::kFeedbackVectorOffset));
+ __ mov(ebx, FieldOperand(ebx, Cell::kValueOffset));
+ __ cmp(ebx, masm->isolate()->factory()->undefined_value());
+ __ j(equal, &gotta_call_runtime_no_stack);
+
+ __ push(argument_count);
+ __ push(new_target);
+ __ push(closure);
+
+ Register map = argument_count;
+ Register index = ebx;
+ __ mov(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
+ __ mov(index, FieldOperand(map, FixedArray::kLengthOffset));
+ __ cmp(index, Immediate(Smi::FromInt(2)));
+ __ j(less, &try_shared);
+
+ // edx : native context
+ // ebx : length / index
+ // eax : optimized code map
+ // stack[0] : new target
+ // stack[4] : closure
+ Register native_context = edx;
+ __ mov(native_context, NativeContextOperand());
+
+ __ bind(&loop_top);
+ Register temp = edi;
+
+ // Does the native context match?
+ __ mov(temp, FieldOperand(map, index, times_half_pointer_size,
+ SharedFunctionInfo::kOffsetToPreviousContext));
+ __ mov(temp, FieldOperand(temp, WeakCell::kValueOffset));
+ __ cmp(temp, native_context);
+ __ j(not_equal, &loop_bottom);
+ // Code available?
+ Register entry = ecx;
+ __ mov(entry, FieldOperand(map, index, times_half_pointer_size,
+ SharedFunctionInfo::kOffsetToPreviousCachedCode));
+ __ mov(entry, FieldOperand(entry, WeakCell::kValueOffset));
+ __ JumpIfSmi(entry, &try_shared);
+
+ // Found code. Get it into the closure and return.
+ __ pop(closure);
+ // Store code entry in the closure.
+ __ lea(entry, FieldOperand(entry, Code::kHeaderSize));
+ __ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
+ __ RecordWriteCodeEntryField(closure, entry, eax);
+
+ // Link the closure into the optimized function list.
+ // ecx : code entry
+ // edx : native context
+ // edi : closure
+ __ mov(ebx,
+ ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
+ __ mov(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), ebx);
+ __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, ebx, eax,
+ kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ const int function_list_offset =
+ Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
+ __ mov(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST),
+ closure);
+ // Save closure before the write barrier.
+ __ mov(ebx, closure);
+ __ RecordWriteContextSlot(native_context, function_list_offset, closure, eax,
+ kDontSaveFPRegs);
+ __ mov(closure, ebx);
+ __ pop(new_target);
+ __ pop(argument_count);
+ __ jmp(entry);
+
+ __ bind(&loop_bottom);
+ __ sub(index, Immediate(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
+ __ cmp(index, Immediate(Smi::FromInt(1)));
+ __ j(greater, &loop_top);
+
+ // We found no code.
+ __ jmp(&gotta_call_runtime);
+
+ __ bind(&try_shared);
+ __ pop(closure);
+ __ pop(new_target);
+ __ pop(argument_count);
+ __ mov(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
+ // Is the shared function marked for tier up?
+ __ test(FieldOperand(entry, SharedFunctionInfo::kCompilerHintsOffset),
+ Immediate(SharedFunctionInfo::MarkedForTierUpBit::kMask));
+ __ j(not_zero, &gotta_call_runtime_no_stack);
+
+ // If SFI points to anything other than CompileLazy, install that.
+ __ mov(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset));
+ __ Move(ebx, masm->CodeObject());
+ __ cmp(entry, ebx);
+ __ j(equal, &gotta_call_runtime_no_stack);
+
+ // Install the SFI's code entry.
+ __ lea(entry, FieldOperand(entry, Code::kHeaderSize));
+ __ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
+ __ RecordWriteCodeEntryField(closure, entry, ebx);
+ __ jmp(entry);
+
+ __ bind(&gotta_call_runtime);
+ __ pop(closure);
+ __ pop(new_target);
+ __ pop(argument_count);
+ __ bind(&gotta_call_runtime_no_stack);
+
+ GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
+}
+
+void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
+ GenerateTailCallToReturnedCode(masm,
+ Runtime::kCompileOptimized_NotConcurrent);
+}
+
+void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
+ GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
+}
+
+void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argument count (preserved for callee)
+ // -- edx : new target (preserved for callee)
+ // -- edi : target function (preserved for callee)
+ // -----------------------------------
+ Label failed;
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ // Preserve argument count for later compare.
+ __ mov(ecx, eax);
+ // Push the number of arguments to the callee.
+ __ SmiTag(eax);
+ __ push(eax);
+ // Push a copy of the target function and the new target.
+ __ push(edi);
+ __ push(edx);
+
+ // The function.
+ __ push(edi);
+ // Copy arguments from caller (stdlib, foreign, heap).
+ Label args_done;
+ for (int j = 0; j < 4; ++j) {
+ Label over;
+ if (j < 3) {
+ __ cmp(ecx, Immediate(j));
+ __ j(not_equal, &over, Label::kNear);
+ }
+ for (int i = j - 1; i >= 0; --i) {
+ __ Push(Operand(
+ ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
+ }
+ for (int i = 0; i < 3 - j; ++i) {
+ __ PushRoot(Heap::kUndefinedValueRootIndex);
+ }
+ if (j < 3) {
+ __ jmp(&args_done, Label::kNear);
+ __ bind(&over);
+ }
+ }
+ __ bind(&args_done);
+
+ // Call runtime, on success unwind frame, and parent frame.
+ __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
+ // A smi 0 is returned on failure, an object on success.
+ __ JumpIfSmi(eax, &failed, Label::kNear);
+
+ __ Drop(2);
+ __ Pop(ecx);
+ __ SmiUntag(ecx);
+ scope.GenerateLeaveFrame();
+
+ __ PopReturnAddressTo(ebx);
+ __ inc(ecx);
+ __ lea(esp, Operand(esp, ecx, times_pointer_size, 0));
+ __ PushReturnAddressFrom(ebx);
+ __ ret(0);
+
+ __ bind(&failed);
+ // Restore target function and new target.
+ __ pop(edx);
+ __ pop(edi);
+ __ pop(eax);
+ __ SmiUntag(eax);
+ }
+ // On failure, tail call back to regular js.
+ GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
+}
+
+static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
+ // For now, we are relying on the fact that make_code_young doesn't do any
+ // garbage collection which allows us to save/restore the registers without
+ // worrying about which of them contain pointers. We also don't build an
+ // internal frame to make the code faster, since we shouldn't have to do stack
+ // crawls in MakeCodeYoung. This seems a bit fragile.
+
+ // Re-execute the code that was patched back to the young age when
+ // the stub returns.
+ __ sub(Operand(esp, 0), Immediate(5));
+ __ pushad();
+ __ mov(eax, Operand(esp, 8 * kPointerSize));
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ PrepareCallCFunction(2, ebx);
+ __ mov(Operand(esp, 1 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(masm->isolate())));
+ __ mov(Operand(esp, 0), eax);
+ __ CallCFunction(
+ ExternalReference::get_make_code_young_function(masm->isolate()), 2);
+ }
+ __ popad();
+ __ ret(0);
+}
+
+#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
+ void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
+ GenerateMakeCodeYoungAgainCommon(masm); \
+ }
+CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
+#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
+
+void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
+ // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
+ // that make_code_young doesn't do any garbage collection which allows us to
+ // save/restore the registers without worrying about which of them contain
+ // pointers.
+ __ pushad();
+ __ mov(eax, Operand(esp, 8 * kPointerSize));
+ __ sub(eax, Immediate(Assembler::kCallInstructionLength));
+ { // NOLINT
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ PrepareCallCFunction(2, ebx);
+ __ mov(Operand(esp, 1 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(masm->isolate())));
+ __ mov(Operand(esp, 0), eax);
+ __ CallCFunction(
+ ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
+ 2);
+ }
+ __ popad();
+
+ // Perform prologue operations usually performed by the young code stub.
+ __ pop(eax); // Pop return address into scratch register.
+ __ push(ebp); // Caller's frame pointer.
+ __ mov(ebp, esp);
+ __ push(esi); // Callee's context.
+ __ push(edi); // Callee's JS Function.
+ __ push(eax); // Push return address after frame prologue.
+
+ // Jump to point after the code-age stub.
+ __ ret(0);
+}
+
+void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
+ GenerateMakeCodeYoungAgainCommon(masm);
+}
+
+void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
+ Generate_MarkCodeAsExecutedOnce(masm);
+}
+
+static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
+ Deoptimizer::BailoutType type) {
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Pass deoptimization type to the runtime system.
+ __ push(Immediate(Smi::FromInt(static_cast<int>(type))));
+ __ CallRuntime(Runtime::kNotifyDeoptimized);
+
+ // Tear down internal frame.
+ }
+
+ // Get the full codegen state from the stack and untag it.
+ __ mov(ecx, Operand(esp, 1 * kPointerSize));
+ __ SmiUntag(ecx);
+
+ // Switch on the state.
+ Label not_no_registers, not_tos_eax;
+ __ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS));
+ __ j(not_equal, &not_no_registers, Label::kNear);
+ __ ret(1 * kPointerSize); // Remove state.
+
+ __ bind(&not_no_registers);
+ DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
+ __ mov(eax, Operand(esp, 2 * kPointerSize));
+ __ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER));
+ __ j(not_equal, &not_tos_eax, Label::kNear);
+ __ ret(2 * kPointerSize); // Remove state, eax.
+
+ __ bind(&not_tos_eax);
+ __ Abort(kNoCasesLeft);
+}
+
+void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
+ Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
+}
+
+void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
+ Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
+}
+
+void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
+ Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
+}
+
+// static
+void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- esp[0] : return address
+ // -- esp[4] : argArray
+ // -- esp[8] : thisArg
+ // -- esp[12] : receiver
+ // -----------------------------------
+
+ // 1. Load receiver into edi, argArray into eax (if present), remove all
+ // arguments from the stack (including the receiver), and push thisArg (if
+ // present) instead.
+ {
+ Label no_arg_array, no_this_arg;
+ __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
+ __ mov(ebx, edx);
+ __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
+ __ test(eax, eax);
+ __ j(zero, &no_this_arg, Label::kNear);
+ {
+ __ mov(edx, Operand(esp, eax, times_pointer_size, 0));
+ __ cmp(eax, Immediate(1));
+ __ j(equal, &no_arg_array, Label::kNear);
+ __ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize));
+ __ bind(&no_arg_array);
+ }
+ __ bind(&no_this_arg);
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+ __ Move(eax, ebx);
+ }
+
+ // ----------- S t a t e -------------
+ // -- eax : argArray
+ // -- edi : receiver
+ // -- esp[0] : return address
+ // -- esp[4] : thisArg
+ // -----------------------------------
+
+ // 2. Make sure the receiver is actually callable.
+ Label receiver_not_callable;
+ __ JumpIfSmi(edi, &receiver_not_callable, Label::kNear);
+ __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsCallable));
+ __ j(zero, &receiver_not_callable, Label::kNear);
+
+ // 3. Tail call with no arguments if argArray is null or undefined.
+ Label no_arguments;
+ __ JumpIfRoot(eax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
+ __ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &no_arguments,
+ Label::kNear);
+
+ // 4a. Apply the receiver to the given argArray (passing undefined for
+ // new.target).
+ __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
+ __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
+
+ // 4b. The argArray is either null or undefined, so we tail call without any
+ // arguments to the receiver.
+ __ bind(&no_arguments);
+ {
+ __ Set(eax, 0);
+ __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+ }
+
+ // 4c. The receiver is not callable, throw an appropriate TypeError.
+ __ bind(&receiver_not_callable);
+ {
+ __ mov(Operand(esp, kPointerSize), edi);
+ __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
+ }
+}
+
+// static
+void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
+ // Stack Layout:
+ // esp[0] : Return address
+ // esp[8] : Argument n
+ // esp[16] : Argument n-1
+ // ...
+ // esp[8 * n] : Argument 1
+ // esp[8 * (n + 1)] : Receiver (callable to call)
+ //
+ // eax contains the number of arguments, n, not counting the receiver.
+ //
+ // 1. Make sure we have at least one argument.
+ {
+ Label done;
+ __ test(eax, eax);
+ __ j(not_zero, &done, Label::kNear);
+ __ PopReturnAddressTo(ebx);
+ __ PushRoot(Heap::kUndefinedValueRootIndex);
+ __ PushReturnAddressFrom(ebx);
+ __ inc(eax);
+ __ bind(&done);
+ }
+
+ // 2. Get the callable to call (passed as receiver) from the stack.
+ __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
+
+ // 3. Shift arguments and return address one slot down on the stack
+ // (overwriting the original receiver). Adjust argument count to make
+ // the original first argument the new receiver.
+ {
+ Label loop;
+ __ mov(ecx, eax);
+ __ bind(&loop);
+ __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0));
+ __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx);
+ __ dec(ecx);
+ __ j(not_sign, &loop); // While non-negative (to copy return address).
+ __ pop(ebx); // Discard copy of return address.
+ __ dec(eax); // One fewer argument (first argument is new receiver).
+ }
+
+ // 4. Call the callable.
+ __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+}
+
+void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- esp[0] : return address
+ // -- esp[4] : argumentsList
+ // -- esp[8] : thisArgument
+ // -- esp[12] : target
+ // -- esp[16] : receiver
+ // -----------------------------------
+
+ // 1. Load target into edi (if present), argumentsList into eax (if present),
+ // remove all arguments from the stack (including the receiver), and push
+ // thisArgument (if present) instead.
+ {
+ Label done;
+ __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
+ __ mov(edx, edi);
+ __ mov(ebx, edi);
+ __ cmp(eax, Immediate(1));
+ __ j(below, &done, Label::kNear);
+ __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
+ __ j(equal, &done, Label::kNear);
+ __ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
+ __ cmp(eax, Immediate(3));
+ __ j(below, &done, Label::kNear);
+ __ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
+ __ bind(&done);
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+ __ Move(eax, ebx);
+ }
+
+ // ----------- S t a t e -------------
+ // -- eax : argumentsList
+ // -- edi : target
+ // -- esp[0] : return address
+ // -- esp[4] : thisArgument
+ // -----------------------------------
+
+ // 2. Make sure the target is actually callable.
+ Label target_not_callable;
+ __ JumpIfSmi(edi, &target_not_callable, Label::kNear);
+ __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsCallable));
+ __ j(zero, &target_not_callable, Label::kNear);
+
+ // 3a. Apply the target to the given argumentsList (passing undefined for
+ // new.target).
+ __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
+ __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
+
+ // 3b. The target is not callable, throw an appropriate TypeError.
+ __ bind(&target_not_callable);
+ {
+ __ mov(Operand(esp, kPointerSize), edi);
+ __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
+ }
+}
+
+void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- esp[0] : return address
+ // -- esp[4] : new.target (optional)
+ // -- esp[8] : argumentsList
+ // -- esp[12] : target
+ // -- esp[16] : receiver
+ // -----------------------------------
+
+ // 1. Load target into edi (if present), argumentsList into eax (if present),
+ // new.target into edx (if present, otherwise use target), remove all
+ // arguments from the stack (including the receiver), and push thisArgument
+ // (if present) instead.
+ {
+ Label done;
+ __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
+ __ mov(edx, edi);
+ __ mov(ebx, edi);
+ __ cmp(eax, Immediate(1));
+ __ j(below, &done, Label::kNear);
+ __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
+ __ mov(edx, edi);
+ __ j(equal, &done, Label::kNear);
+ __ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
+ __ cmp(eax, Immediate(3));
+ __ j(below, &done, Label::kNear);
+ __ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
+ __ bind(&done);
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
+ __ PushRoot(Heap::kUndefinedValueRootIndex);
+ __ PushReturnAddressFrom(ecx);
+ __ Move(eax, ebx);
+ }
+
+ // ----------- S t a t e -------------
+ // -- eax : argumentsList
+ // -- edx : new.target
+ // -- edi : target
+ // -- esp[0] : return address
+ // -- esp[4] : receiver (undefined)
+ // -----------------------------------
+
+ // 2. Make sure the target is actually a constructor.
+ Label target_not_constructor;
+ __ JumpIfSmi(edi, &target_not_constructor, Label::kNear);
+ __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsConstructor));
+ __ j(zero, &target_not_constructor, Label::kNear);
+
+ // 3. Make sure the target is actually a constructor.
+ Label new_target_not_constructor;
+ __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsConstructor));
+ __ j(zero, &new_target_not_constructor, Label::kNear);
+
+ // 4a. Construct the target with the given new.target and argumentsList.
+ __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
+
+ // 4b. The target is not a constructor, throw an appropriate TypeError.
+ __ bind(&target_not_constructor);
+ {
+ __ mov(Operand(esp, kPointerSize), edi);
+ __ TailCallRuntime(Runtime::kThrowNotConstructor);
+ }
+
+ // 4c. The new.target is not a constructor, throw an appropriate TypeError.
+ __ bind(&new_target_not_constructor);
+ {
+ __ mov(Operand(esp, kPointerSize), edx);
+ __ TailCallRuntime(Runtime::kThrowNotConstructor);
+ }
+}
+
+void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -----------------------------------
+ Label generic_array_code;
+
+ // Get the InternalArray function.
+ __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
+
+ if (FLAG_debug_code) {
+ // Initial map for the builtin InternalArray function should be a map.
+ __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ test(ebx, Immediate(kSmiTagMask));
+ __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
+ __ CmpObjectType(ebx, MAP_TYPE, ecx);
+ __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
+ }
+
+ // Run the native code for the InternalArray function called as a normal
+ // function.
+ // tail call a stub
+ InternalArrayConstructorStub stub(masm->isolate());
+ __ TailCallStub(&stub);
+}
+
+void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -----------------------------------
+ Label generic_array_code;
+
+ // Get the Array function.
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
+ __ mov(edx, edi);
+
+ if (FLAG_debug_code) {
+ // Initial map for the builtin Array function should be a map.
+ __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ test(ebx, Immediate(kSmiTagMask));
+ __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
+ __ CmpObjectType(ebx, MAP_TYPE, ecx);
+ __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
+ }
+
+ // Run the native code for the Array function called as a normal function.
+ // tail call a stub
+ __ mov(ebx, masm->isolate()->factory()->undefined_value());
+ ArrayConstructorStub stub(masm->isolate());
+ __ TailCallStub(&stub);
+}
+
+// static
+void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments
+ // -- edi : constructor function
+ // -- esi : context
+ // -- esp[0] : return address
+ // -- esp[(argc - n) * 4] : arg[n] (zero-based)
+ // -- esp[(argc + 1) * 4] : receiver
+ // -----------------------------------
+
+ // 1. Load the first argument into ebx.
+ Label no_arguments;
+ {
+ __ test(eax, eax);
+ __ j(zero, &no_arguments, Label::kNear);
+ __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
+ }
+
+ // 2a. Convert the first argument to a number.
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ SmiTag(eax);
+ __ EnterBuiltinFrame(esi, edi, eax);
+ __ mov(eax, ebx);
+ __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
+ __ LeaveBuiltinFrame(esi, edi, ebx); // Argc popped to ebx.
+ __ SmiUntag(ebx);
+ }
+
+ {
+ // Drop all arguments including the receiver.
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
+ __ PushReturnAddressFrom(ecx);
+ __ Ret();
+ }
+
+ // 2b. No arguments, return +0 (already in eax).
+ __ bind(&no_arguments);
+ __ ret(1 * kPointerSize);
+}
+
+// static
+void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments
+ // -- edi : constructor function
+ // -- edx : new target
+ // -- esi : context
+ // -- esp[0] : return address
+ // -- esp[(argc - n) * 4] : arg[n] (zero-based)
+ // -- esp[(argc + 1) * 4] : receiver
+ // -----------------------------------
+
+ // 1. Make sure we operate in the context of the called function.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ // Store argc in r8.
+ __ mov(ecx, eax);
+ __ SmiTag(ecx);
+
+ // 2. Load the first argument into ebx.
+ {
+ Label no_arguments, done;
+ __ test(eax, eax);
+ __ j(zero, &no_arguments, Label::kNear);
+ __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
+ __ jmp(&done, Label::kNear);
+ __ bind(&no_arguments);
+ __ Move(ebx, Smi::kZero);
+ __ bind(&done);
+ }
+
+ // 3. Make sure ebx is a number.
+ {
+ Label done_convert;
+ __ JumpIfSmi(ebx, &done_convert);
+ __ CompareRoot(FieldOperand(ebx, HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ __ j(equal, &done_convert);
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ EnterBuiltinFrame(esi, edi, ecx);
+ __ Push(edx);
+ __ Move(eax, ebx);
+ __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
+ __ Move(ebx, eax);
+ __ Pop(edx);
+ __ LeaveBuiltinFrame(esi, edi, ecx);
+ }
+ __ bind(&done_convert);
+ }
+
+ // 4. Check if new target and constructor differ.
+ Label drop_frame_and_ret, done_alloc, new_object;
+ __ cmp(edx, edi);
+ __ j(not_equal, &new_object);
+
+ // 5. Allocate a JSValue wrapper for the number.
+ __ AllocateJSValue(eax, edi, ebx, esi, &done_alloc);
+ __ jmp(&drop_frame_and_ret);
+
+ __ bind(&done_alloc);
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Restore esi.
+
+ // 6. Fallback to the runtime to create new object.
+ __ bind(&new_object);
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ EnterBuiltinFrame(esi, edi, ecx);
+ __ Push(ebx); // the first argument
+ __ Call(masm->isolate()->builtins()->FastNewObject(),
+ RelocInfo::CODE_TARGET);
+ __ Pop(FieldOperand(eax, JSValue::kValueOffset));
+ __ LeaveBuiltinFrame(esi, edi, ecx);
+ }
+
+ __ bind(&drop_frame_and_ret);
+ {
+ // Drop all arguments including the receiver.
+ __ PopReturnAddressTo(esi);
+ __ SmiUntag(ecx);
+ __ lea(esp, Operand(esp, ecx, times_pointer_size, kPointerSize));
+ __ PushReturnAddressFrom(esi);
+ __ Ret();
+ }
+}
+
+// static
+void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments
+ // -- edi : constructor function
+ // -- esi : context
+ // -- esp[0] : return address
+ // -- esp[(argc - n) * 4] : arg[n] (zero-based)
+ // -- esp[(argc + 1) * 4] : receiver
+ // -----------------------------------
+
+ // 1. Load the first argument into eax.
+ Label no_arguments;
+ {
+ __ mov(ebx, eax); // Store argc in ebx.
+ __ test(eax, eax);
+ __ j(zero, &no_arguments, Label::kNear);
+ __ mov(eax, Operand(esp, eax, times_pointer_size, 0));
+ }
+
+ // 2a. At least one argument, return eax if it's a string, otherwise
+ // dispatch to appropriate conversion.
+ Label drop_frame_and_ret, to_string, symbol_descriptive_string;
+ {
+ __ JumpIfSmi(eax, &to_string, Label::kNear);
+ STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
+ __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
+ __ j(above, &to_string, Label::kNear);
+ __ j(equal, &symbol_descriptive_string, Label::kNear);
+ __ jmp(&drop_frame_and_ret, Label::kNear);
+ }
+
+ // 2b. No arguments, return the empty string (and pop the receiver).
+ __ bind(&no_arguments);
+ {
+ __ LoadRoot(eax, Heap::kempty_stringRootIndex);
+ __ ret(1 * kPointerSize);
+ }
+
+ // 3a. Convert eax to a string.
+ __ bind(&to_string);
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ SmiTag(ebx);
+ __ EnterBuiltinFrame(esi, edi, ebx);
+ __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
+ __ LeaveBuiltinFrame(esi, edi, ebx);
+ __ SmiUntag(ebx);
+ }
+ __ jmp(&drop_frame_and_ret, Label::kNear);
+
+ // 3b. Convert symbol in eax to a string.
+ __ bind(&symbol_descriptive_string);
+ {
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
+ __ Push(eax);
+ __ PushReturnAddressFrom(ecx);
+ __ TailCallRuntime(Runtime::kSymbolDescriptiveString);
+ }
+
+ __ bind(&drop_frame_and_ret);
+ {
+ // Drop all arguments including the receiver.
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
+ __ PushReturnAddressFrom(ecx);
+ __ Ret();
+ }
+}
+
+// static
+void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments
+ // -- edi : constructor function
+ // -- edx : new target
+ // -- esi : context
+ // -- esp[0] : return address
+ // -- esp[(argc - n) * 4] : arg[n] (zero-based)
+ // -- esp[(argc + 1) * 4] : receiver
+ // -----------------------------------
+
+ // 1. Make sure we operate in the context of the called function.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ __ mov(ebx, eax);
+
+ // 2. Load the first argument into eax.
+ {
+ Label no_arguments, done;
+ __ test(ebx, ebx);
+ __ j(zero, &no_arguments, Label::kNear);
+ __ mov(eax, Operand(esp, ebx, times_pointer_size, 0));
+ __ jmp(&done, Label::kNear);
+ __ bind(&no_arguments);
+ __ LoadRoot(eax, Heap::kempty_stringRootIndex);
+ __ bind(&done);
+ }
+
+ // 3. Make sure eax is a string.
+ {
+ Label convert, done_convert;
+ __ JumpIfSmi(eax, &convert, Label::kNear);
+ __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx);
+ __ j(below, &done_convert);
+ __ bind(&convert);
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ SmiTag(ebx);
+ __ EnterBuiltinFrame(esi, edi, ebx);
+ __ Push(edx);
+ __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
+ __ Pop(edx);
+ __ LeaveBuiltinFrame(esi, edi, ebx);
+ __ SmiUntag(ebx);
+ }
+ __ bind(&done_convert);
+ }
+
+ // 4. Check if new target and constructor differ.
+ Label drop_frame_and_ret, done_alloc, new_object;
+ __ cmp(edx, edi);
+ __ j(not_equal, &new_object);
+
+ // 5. Allocate a JSValue wrapper for the string.
+ // AllocateJSValue can't handle src == dst register. Reuse esi and restore it
+ // as needed after the call.
+ __ mov(esi, eax);
+ __ AllocateJSValue(eax, edi, esi, ecx, &done_alloc);
+ __ jmp(&drop_frame_and_ret);
+
+ __ bind(&done_alloc);
+ {
+ // Restore eax to the first argument and esi to the context.
+ __ mov(eax, esi);
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+ }
+
+ // 6. Fallback to the runtime to create new object.
+ __ bind(&new_object);
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ SmiTag(ebx);
+ __ EnterBuiltinFrame(esi, edi, ebx);
+ __ Push(eax); // the first argument
+ __ Call(masm->isolate()->builtins()->FastNewObject(),
+ RelocInfo::CODE_TARGET);
+ __ Pop(FieldOperand(eax, JSValue::kValueOffset));
+ __ LeaveBuiltinFrame(esi, edi, ebx);
+ __ SmiUntag(ebx);
+ }
+
+ __ bind(&drop_frame_and_ret);
+ {
+ // Drop all arguments including the receiver.
+ __ PopReturnAddressTo(ecx);
+ __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
+ __ PushReturnAddressFrom(ecx);
+ __ Ret();
+ }
+}
+
+static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
+ __ push(ebp);
+ __ mov(ebp, esp);
+
+ // Store the arguments adaptor context sentinel.
+ __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Push the function on the stack.
+ __ push(edi);
+
+ // Preserve the number of arguments on the stack. Must preserve eax,
+ // ebx and ecx because these registers are used when copying the
+ // arguments and the receiver.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
+ __ push(edi);
+}
+
+static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
+ // Retrieve the number of arguments from the stack.
+ __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ // Leave the frame.
+ __ leave();
+
+ // Remove caller arguments from the stack.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+ __ pop(ecx);
+ __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
+ __ push(ecx);
+}
+
+// static
+void Builtins::Generate_Apply(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argumentsList
+ // -- edi : target
+ // -- edx : new.target (checked to be constructor or undefined)
+ // -- esp[0] : return address.
+ // -- esp[4] : thisArgument
+ // -----------------------------------
+
+ // Create the list of arguments from the array-like argumentsList.
+ {
+ Label create_arguments, create_array, create_holey_array, create_runtime,
+ done_create;
+ __ JumpIfSmi(eax, &create_runtime);
+
+ // Load the map of argumentsList into ecx.
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+
+ // Load native context into ebx.
+ __ mov(ebx, NativeContextOperand());
+
+ // Check if argumentsList is an (unmodified) arguments object.
+ __ cmp(ecx, ContextOperand(ebx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
+ __ j(equal, &create_arguments);
+ __ cmp(ecx, ContextOperand(ebx, Context::STRICT_ARGUMENTS_MAP_INDEX));
+ __ j(equal, &create_arguments);
+
+ // Check if argumentsList is a fast JSArray.
+ __ CmpInstanceType(ecx, JS_ARRAY_TYPE);
+ __ j(equal, &create_array);
+
+ // Ask the runtime to create the list (actually a FixedArray).
+ __ bind(&create_runtime);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(edi);
+ __ Push(edx);
+ __ Push(eax);
+ __ CallRuntime(Runtime::kCreateListFromArrayLike);
+ __ Pop(edx);
+ __ Pop(edi);
+ __ mov(ebx, FieldOperand(eax, FixedArray::kLengthOffset));
+ __ SmiUntag(ebx);
+ }
+ __ jmp(&done_create);
+
+ // Try to create the list from an arguments object.
+ __ bind(&create_arguments);
+ __ mov(ebx, FieldOperand(eax, JSArgumentsObject::kLengthOffset));
+ __ mov(ecx, FieldOperand(eax, JSObject::kElementsOffset));
+ __ cmp(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
+ __ j(not_equal, &create_runtime);
+ __ SmiUntag(ebx);
+ __ mov(eax, ecx);
+ __ jmp(&done_create);
+
+ // For holey JSArrays we need to check that the array prototype chain
+ // protector is intact and our prototype is the Array.prototype actually.
+ __ bind(&create_holey_array);
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset));
+ __ cmp(ecx, ContextOperand(ebx, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
+ __ j(not_equal, &create_runtime);
+ __ LoadRoot(ecx, Heap::kArrayProtectorRootIndex);
+ __ cmp(FieldOperand(ecx, PropertyCell::kValueOffset),
+ Immediate(Smi::FromInt(Isolate::kProtectorValid)));
+ __ j(not_equal, &create_runtime);
+ __ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset));
+ __ SmiUntag(ebx);
+ __ mov(eax, FieldOperand(eax, JSArray::kElementsOffset));
+ __ jmp(&done_create);
+
+ // Try to create the list from a JSArray object.
+ __ bind(&create_array);
+ __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
+ __ DecodeField<Map::ElementsKindBits>(ecx);
+ STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(PACKED_ELEMENTS == 2);
+ STATIC_ASSERT(HOLEY_ELEMENTS == 3);
+ __ cmp(ecx, Immediate(HOLEY_SMI_ELEMENTS));
+ __ j(equal, &create_holey_array, Label::kNear);
+ __ cmp(ecx, Immediate(HOLEY_ELEMENTS));
+ __ j(equal, &create_holey_array, Label::kNear);
+ __ j(above, &create_runtime);
+ __ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset));
+ __ SmiUntag(ebx);
+ __ mov(eax, FieldOperand(eax, JSArray::kElementsOffset));
+
+ __ bind(&done_create);
+ }
+
+ // Check for stack overflow.
+ {
+ // Check the stack for overflow. We are not trying to catch interruptions
+ // (i.e. debug break and preemption) here, so check the "real stack limit".
+ Label done;
+ ExternalReference real_stack_limit =
+ ExternalReference::address_of_real_stack_limit(masm->isolate());
+ __ mov(ecx, Operand::StaticVariable(real_stack_limit));
+ // Make ecx the space we have left. The stack might already be overflowed
+ // here which will cause ecx to become negative.
+ __ neg(ecx);
+ __ add(ecx, esp);
+ __ sar(ecx, kPointerSizeLog2);
+ // Check if the arguments will overflow the stack.
+ __ cmp(ecx, ebx);
+ __ j(greater, &done, Label::kNear); // Signed comparison.
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+ __ bind(&done);
+ }
+
+ // ----------- S t a t e -------------
+ // -- edi : target
+ // -- eax : args (a FixedArray built from argumentsList)
+ // -- ebx : len (number of elements to push from args)
+ // -- edx : new.target (checked to be constructor or undefined)
+ // -- esp[0] : return address.
+ // -- esp[4] : thisArgument
+ // -----------------------------------
+
+ // Push arguments onto the stack (thisArgument is already on the stack).
+ {
+ // Save edx/edi to stX0/stX1.
+ __ push(edx);
+ __ push(edi);
+ __ fld_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 4));
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+
+ __ PopReturnAddressTo(edx);
+ __ Move(ecx, Immediate(0));
+ Label done, push, loop;
+ __ bind(&loop);
+ __ cmp(ecx, ebx);
+ __ j(equal, &done, Label::kNear);
+ // Turn the hole into undefined as we go.
+ __ mov(edi,
+ FieldOperand(eax, ecx, times_pointer_size, FixedArray::kHeaderSize));
+ __ CompareRoot(edi, Heap::kTheHoleValueRootIndex);
+ __ j(not_equal, &push, Label::kNear);
+ __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
+ __ bind(&push);
+ __ Push(edi);
+ __ inc(ecx);
+ __ jmp(&loop);
+ __ bind(&done);
+ __ PushReturnAddressFrom(edx);
+
+ // Restore edx/edi from stX0/stX1.
+ __ lea(esp, Operand(esp, -2 * kFloatSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fstp_s(MemOperand(esp, 4));
+ __ pop(edx);
+ __ pop(edi);
+
+ __ Move(eax, ebx);
+ }
+
+ // Dispatch to Call or Construct depending on whether new.target is undefined.
+ {
+ __ CompareRoot(edx, Heap::kUndefinedValueRootIndex);
+ __ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+ __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+ }
+}
+
+// static
+void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm,
+ Handle<Code> code) {
+ // ----------- S t a t e -------------
+ // -- edi : the target to call (can be any Object)
+ // -- ecx : start index (to support rest parameters)
+ // -- esp[0] : return address.
+ // -- esp[4] : thisArgument
+ // -----------------------------------
+
+ // Check if we have an arguments adaptor frame below the function frame.
+ Label arguments_adaptor, arguments_done;
+ __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &arguments_adaptor, Label::kNear);
+ {
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(eax,
+ FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ mov(ebx, ebp);
+ }
+ __ jmp(&arguments_done, Label::kNear);
+ __ bind(&arguments_adaptor);
+ {
+ // Just load the length from the ArgumentsAdaptorFrame.
+ __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(eax);
+ }
+ __ bind(&arguments_done);
+
+ Label stack_empty, stack_done;
+ __ sub(eax, ecx);
+ __ j(less_equal, &stack_empty);
+ {
+ // Check for stack overflow.
+ {
+ // Check the stack for overflow. We are not trying to catch interruptions
+ // (i.e. debug break and preemption) here, so check the "real stack
+ // limit".
+ Label done;
+ __ LoadRoot(ecx, Heap::kRealStackLimitRootIndex);
+ // Make ecx the space we have left. The stack might already be
+ // overflowed here which will cause ecx to become negative.
+ __ neg(ecx);
+ __ add(ecx, esp);
+ __ sar(ecx, kPointerSizeLog2);
+ // Check if the arguments will overflow the stack.
+ __ cmp(ecx, eax);
+ __ j(greater, &done, Label::kNear); // Signed comparison.
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+ __ bind(&done);
+ }
+
+ // Forward the arguments from the caller frame.
+ {
+ Label loop;
+ __ mov(ecx, eax);
+ __ pop(edx);
+ __ bind(&loop);
+ {
+ __ Push(Operand(ebx, ecx, times_pointer_size, 1 * kPointerSize));
+ __ dec(ecx);
+ __ j(not_zero, &loop);
+ }
+ __ push(edx);
+ }
+ }
+ __ jmp(&stack_done, Label::kNear);
+ __ bind(&stack_empty);
+ {
+ // We just pass the receiver, which is already on the stack.
+ __ Move(eax, Immediate(0));
+ }
+ __ bind(&stack_done);
+
+ __ Jump(code, RelocInfo::CODE_TARGET);
+}
+
+namespace {
+
+// Drops top JavaScript frame and an arguments adaptor frame below it (if
+// present) preserving all the arguments prepared for current call.
+// Does nothing if debugger is currently active.
+// ES6 14.6.3. PrepareForTailCall
+//
+// Stack structure for the function g() tail calling f():
+//
+// ------- Caller frame: -------
+// | ...
+// | g()'s arg M
+// | ...
+// | g()'s arg 1
+// | g()'s receiver arg
+// | g()'s caller pc
+// ------- g()'s frame: -------
+// | g()'s caller fp <- fp
+// | g()'s context
+// | function pointer: g
+// | -------------------------
+// | ...
+// | ...
+// | f()'s arg N
+// | ...
+// | f()'s arg 1
+// | f()'s receiver arg
+// | f()'s caller pc <- sp
+// ----------------------
+//
+void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
+ Register scratch1, Register scratch2,
+ Register scratch3) {
+ DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
+ Comment cmnt(masm, "[ PrepareForTailCall");
+
+ // Prepare for tail call only if ES2015 tail call elimination is enabled.
+ Label done;
+ ExternalReference is_tail_call_elimination_enabled =
+ ExternalReference::is_tail_call_elimination_enabled_address(
+ masm->isolate());
+ __ movzx_b(scratch1,
+ Operand::StaticVariable(is_tail_call_elimination_enabled));
+ __ cmp(scratch1, Immediate(0));
+ __ j(equal, &done, Label::kNear);
+
+ // Drop possible interpreter handler/stub frame.
+ {
+ Label no_interpreter_frame;
+ __ cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(StackFrame::STUB)));
+ __ j(not_equal, &no_interpreter_frame, Label::kNear);
+ __ mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ bind(&no_interpreter_frame);
+ }
+
+ // Check if next frame is an arguments adaptor frame.
+ Register caller_args_count_reg = scratch1;
+ Label no_arguments_adaptor, formal_parameter_count_loaded;
+ __ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(not_equal, &no_arguments_adaptor, Label::kNear);
+
+ // Drop current frame and load arguments count from arguments adaptor frame.
+ __ mov(ebp, scratch2);
+ __ mov(caller_args_count_reg,
+ Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(caller_args_count_reg);
+ __ jmp(&formal_parameter_count_loaded, Label::kNear);
+
+ __ bind(&no_arguments_adaptor);
+ // Load caller's formal parameter count
+ __ mov(scratch1, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ mov(scratch1,
+ FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(
+ caller_args_count_reg,
+ FieldOperand(scratch1, SharedFunctionInfo::kFormalParameterCountOffset));
+
+ __ bind(&formal_parameter_count_loaded);
+
+ ParameterCount callee_args_count(args_reg);
+ __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
+ scratch3, ReturnAddressState::kOnStack, 0);
+ __ bind(&done);
+}
+} // namespace
+
+// static
+void Builtins::Generate_CallFunction(MacroAssembler* masm,
+ ConvertReceiverMode mode,
+ TailCallMode tail_call_mode) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edi : the function to call (checked to be a JSFunction)
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
+ // Check that the function is not a "classConstructor".
+ Label class_constructor;
+ __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ test(FieldOperand(edx, SharedFunctionInfo::kCompilerHintsOffset),
+ Immediate(SharedFunctionInfo::kClassConstructorMask));
+ __ j(not_zero, &class_constructor);
+
+ // Enter the context of the function; ToObject has to run in the function
+ // context, and we also need to take the global proxy from the function
+ // context in case of conversion.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+ // We need to convert the receiver for non-native sloppy mode functions.
+ Label done_convert;
+ __ test(FieldOperand(edx, SharedFunctionInfo::kCompilerHintsOffset),
+ Immediate(SharedFunctionInfo::IsNativeBit::kMask |
+ SharedFunctionInfo::IsStrictBit::kMask));
+ __ j(not_zero, &done_convert);
+ {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the shared function info.
+ // -- edi : the function to call (checked to be a JSFunction)
+ // -- esi : the function context.
+ // -----------------------------------
+
+ if (mode == ConvertReceiverMode::kNullOrUndefined) {
+ // Patch receiver to global proxy.
+ __ LoadGlobalProxy(ecx);
+ } else {
+ Label convert_to_object, convert_receiver;
+ __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
+ __ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
+ STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+ __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx);
+ __ j(above_equal, &done_convert);
+ if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
+ Label convert_global_proxy;
+ __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex,
+ &convert_global_proxy, Label::kNear);
+ __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object,
+ Label::kNear);
+ __ bind(&convert_global_proxy);
+ {
+ // Patch receiver to global proxy.
+ __ LoadGlobalProxy(ecx);
+ }
+ __ jmp(&convert_receiver);
+ }
+ __ bind(&convert_to_object);
+ {
+ // Convert receiver using ToObject.
+ // TODO(bmeurer): Inline the allocation here to avoid building the frame
+ // in the fast case? (fall back to AllocateInNewSpace?)
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ SmiTag(eax);
+ __ Push(eax);
+ __ Push(edi);
+ __ mov(eax, ecx);
+ __ Push(esi);
+ __ Call(masm->isolate()->builtins()->ToObject(),
+ RelocInfo::CODE_TARGET);
+ __ Pop(esi);
+ __ mov(ecx, eax);
+ __ Pop(edi);
+ __ Pop(eax);
+ __ SmiUntag(eax);
+ }
+ __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ bind(&convert_receiver);
+ }
+ __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
+ }
+ __ bind(&done_convert);
+
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the shared function info.
+ // -- edi : the function to call (checked to be a JSFunction)
+ // -- esi : the function context.
+ // -----------------------------------
+
+ if (tail_call_mode == TailCallMode::kAllow) {
+ PrepareForTailCall(masm, eax, ebx, ecx, edx);
+ // Reload shared function info.
+ __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ }
+
+ __ mov(ebx,
+ FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
+ ParameterCount actual(eax);
+ ParameterCount expected(ebx);
+ __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION,
+ CheckDebugStepCallWrapper());
+ // The function is a "classConstructor", need to raise an exception.
+ __ bind(&class_constructor);
+ {
+ FrameScope frame(masm, StackFrame::INTERNAL);
+ __ push(edi);
+ __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
+ }
+}
+
+namespace {
+
+void Generate_PushBoundArguments(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : new.target (only in case of [[Construct]])
+ // -- edi : target (checked to be a JSBoundFunction)
+ // -----------------------------------
+
+ // Load [[BoundArguments]] into ecx and length of that into ebx.
+ Label no_bound_arguments;
+ __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
+ __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
+ __ SmiUntag(ebx);
+ __ test(ebx, ebx);
+ __ j(zero, &no_bound_arguments);
+ {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : new.target (only in case of [[Construct]])
+ // -- edi : target (checked to be a JSBoundFunction)
+ // -- ecx : the [[BoundArguments]] (implemented as FixedArray)
+ // -- ebx : the number of [[BoundArguments]]
+ // -----------------------------------
+
+ // Reserve stack space for the [[BoundArguments]].
+ {
+ Label done;
+ __ lea(ecx, Operand(ebx, times_pointer_size, 0));
+ __ sub(esp, ecx);
+ // Check the stack for overflow. We are not trying to catch interruptions
+ // (i.e. debug break and preemption) here, so check the "real stack
+ // limit".
+ __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
+ __ j(greater, &done, Label::kNear); // Signed comparison.
+ // Restore the stack pointer.
+ __ lea(esp, Operand(esp, ebx, times_pointer_size, 0));
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ EnterFrame(StackFrame::INTERNAL);
+ __ CallRuntime(Runtime::kThrowStackOverflow);
+ }
+ __ bind(&done);
+ }
+
+ // Adjust effective number of arguments to include return address.
+ __ inc(eax);
+
+ // Relocate arguments and return address down the stack.
+ {
+ Label loop;
+ __ Set(ecx, 0);
+ __ lea(ebx, Operand(esp, ebx, times_pointer_size, 0));
+ __ bind(&loop);
+ __ fld_s(Operand(ebx, ecx, times_pointer_size, 0));
+ __ fstp_s(Operand(esp, ecx, times_pointer_size, 0));
+ __ inc(ecx);
+ __ cmp(ecx, eax);
+ __ j(less, &loop);
+ }
+
+ // Copy [[BoundArguments]] to the stack (below the arguments).
+ {
+ Label loop;
+ __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
+ __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
+ __ SmiUntag(ebx);
+ __ bind(&loop);
+ __ dec(ebx);
+ __ fld_s(
+ FieldOperand(ecx, ebx, times_pointer_size, FixedArray::kHeaderSize));
+ __ fstp_s(Operand(esp, eax, times_pointer_size, 0));
+ __ lea(eax, Operand(eax, 1));
+ __ j(greater, &loop);
+ }
+
+ // Adjust effective number of arguments (eax contains the number of
+ // arguments from the call plus return address plus the number of
+ // [[BoundArguments]]), so we need to subtract one for the return address.
+ __ dec(eax);
+ }
+ __ bind(&no_bound_arguments);
+}
+
+} // namespace
+
+// static
+void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
+ TailCallMode tail_call_mode) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edi : the function to call (checked to be a JSBoundFunction)
+ // -----------------------------------
+ __ AssertBoundFunction(edi);
+
+ if (tail_call_mode == TailCallMode::kAllow) {
+ PrepareForTailCall(masm, eax, ebx, ecx, edx);
+ }
+
+ // Patch the receiver to [[BoundThis]].
+ __ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
+ __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx);
+
+ // Push the [[BoundArguments]] onto the stack.
+ Generate_PushBoundArguments(masm);
+
+ // Call the [[BoundTargetFunction]] via the Call builtin.
+ __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
+ __ mov(ecx, Operand::StaticVariable(ExternalReference(
+ Builtins::kCall_ReceiverIsAny, masm->isolate())));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+}
+
+// static
+void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
+ TailCallMode tail_call_mode) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edi : the target to call (can be any Object).
+ // -----------------------------------
+
+ Label non_callable, non_function, non_smi;
+ __ JumpIfSmi(edi, &non_callable);
+ __ bind(&non_smi);
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+ __ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
+ RelocInfo::CODE_TARGET);
+ __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
+ __ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
+ RelocInfo::CODE_TARGET);
+
+ // Check if target has a [[Call]] internal method.
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsCallable));
+ __ j(zero, &non_callable);
+
+ // Check if target is a proxy and call CallProxy external builtin
+ __ CmpInstanceType(ecx, JS_PROXY_TYPE);
+ __ j(not_equal, &non_function);
+
+ __ mov(ecx, Operand::StaticVariable(
+ ExternalReference(Builtins::kCallProxy, masm->isolate())));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+
+ // 2. Call to something else, which might have a [[Call]] internal method (if
+ // not we raise an exception).
+ __ bind(&non_function);
+ // Overwrite the original receiver with the (original) target.
+ __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
+ // Let the "call_as_function_delegate" take care of the rest.
+ __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi);
+ __ Jump(masm->isolate()->builtins()->CallFunction(
+ ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
+ RelocInfo::CODE_TARGET);
+
+ // 3. Call to something that is not callable.
+ __ bind(&non_callable);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(edi);
+ __ CallRuntime(Runtime::kThrowCalledNonCallable);
+ }
+}
+
+static void CheckSpreadAndPushToStack(MacroAssembler* masm) {
+ // Free up some registers.
+ // Save edx/edi to stX0/stX1.
+ __ push(edx);
+ __ push(edi);
+ __ fld_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 4));
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+
+ Register argc = eax;
+
+ Register scratch = ecx;
+ Register scratch2 = edi;
+
+ Register spread = ebx;
+ Register spread_map = edx;
+
+ Register spread_len = edx;
+
+ Label runtime_call, push_args;
+ __ mov(spread, Operand(esp, kPointerSize));
+ __ JumpIfSmi(spread, &runtime_call);
+ __ mov(spread_map, FieldOperand(spread, HeapObject::kMapOffset));
+
+ // Check that the spread is an array.
+ __ CmpInstanceType(spread_map, JS_ARRAY_TYPE);
+ __ j(not_equal, &runtime_call);
+
+ // Check that we have the original ArrayPrototype.
+ __ mov(scratch, FieldOperand(spread_map, Map::kPrototypeOffset));
+ __ mov(scratch2, NativeContextOperand());
+ __ cmp(scratch,
+ ContextOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
+ __ j(not_equal, &runtime_call);
+
+ // Check that the ArrayPrototype hasn't been modified in a way that would
+ // affect iteration.
+ __ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex);
+ __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
+ Immediate(Smi::FromInt(Isolate::kProtectorValid)));
+ __ j(not_equal, &runtime_call);
+
+ // Check that the map of the initial array iterator hasn't changed.
+ __ mov(scratch2, NativeContextOperand());
+ __ mov(scratch,
+ ContextOperand(scratch2,
+ Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX));
+ __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
+ __ cmp(scratch,
+ ContextOperand(scratch2,
+ Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX));
+ __ j(not_equal, &runtime_call);
+
+ // For FastPacked kinds, iteration will have the same effect as simply
+ // accessing each property in order.
+ Label no_protector_check;
+ __ mov(scratch, FieldOperand(spread_map, Map::kBitField2Offset));
+ __ DecodeField<Map::ElementsKindBits>(scratch);
+ __ cmp(scratch, Immediate(HOLEY_ELEMENTS));
+ __ j(above, &runtime_call);
+ // For non-FastHoley kinds, we can skip the protector check.
+ __ cmp(scratch, Immediate(PACKED_SMI_ELEMENTS));
+ __ j(equal, &no_protector_check);
+ __ cmp(scratch, Immediate(PACKED_ELEMENTS));
+ __ j(equal, &no_protector_check);
+ // Check the ArrayProtector cell.
+ __ LoadRoot(scratch, Heap::kArrayProtectorRootIndex);
+ __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
+ Immediate(Smi::FromInt(Isolate::kProtectorValid)));
+ __ j(not_equal, &runtime_call);
+
+ __ bind(&no_protector_check);
+ // Load the FixedArray backing store, but use the length from the array.
+ __ mov(spread_len, FieldOperand(spread, JSArray::kLengthOffset));
+ __ SmiUntag(spread_len);
+ __ mov(spread, FieldOperand(spread, JSArray::kElementsOffset));
+ __ jmp(&push_args);
+
+ __ bind(&runtime_call);
+ {
+ // Call the builtin for the result of the spread.
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ // Need to save these on the stack.
+ // Restore edx/edi from stX0/stX1.
+ __ lea(esp, Operand(esp, -2 * kFloatSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fstp_s(MemOperand(esp, 4));
+ __ pop(edx);
+ __ pop(edi);
+
+ __ Push(edi);
+ __ Push(edx);
+ __ SmiTag(argc);
+ __ Push(argc);
+ __ Push(spread);
+ __ CallRuntime(Runtime::kSpreadIterableFixed);
+ __ mov(spread, eax);
+ __ Pop(argc);
+ __ SmiUntag(argc);
+ __ Pop(edx);
+ __ Pop(edi);
+ // Free up some registers.
+ // Save edx/edi to stX0/stX1.
+ __ push(edx);
+ __ push(edi);
+ __ fld_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 4));
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ }
+
+ {
+ // Calculate the new nargs including the result of the spread.
+ __ mov(spread_len, FieldOperand(spread, FixedArray::kLengthOffset));
+ __ SmiUntag(spread_len);
+
+ __ bind(&push_args);
+ // argc += spread_len - 1. Subtract 1 for the spread itself.
+ __ lea(argc, Operand(argc, spread_len, times_1, -1));
+ }
+
+ // Check for stack overflow.
+ {
+ // Check the stack for overflow. We are not trying to catch interruptions
+ // (i.e. debug break and preemption) here, so check the "real stack limit".
+ Label done;
+ __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
+ // Make scratch the space we have left. The stack might already be
+ // overflowed here which will cause scratch to become negative.
+ __ neg(scratch);
+ __ add(scratch, esp);
+ __ sar(scratch, kPointerSizeLog2);
+ // Check if the arguments will overflow the stack.
+ __ cmp(scratch, spread_len);
+ __ j(greater, &done, Label::kNear); // Signed comparison.
+ __ TailCallRuntime(Runtime::kThrowStackOverflow);
+ __ bind(&done);
+ }
+
+ // Put the evaluated spread onto the stack as additional arguments.
+ {
+ Register return_address = edi;
+ // Pop the return address and spread argument.
+ __ PopReturnAddressTo(return_address);
+ __ Pop(scratch);
+
+ Register scratch2 = esi;
+ // Save esi to stX0, edx/edi in stX1/stX2 now.
+ __ push(esi);
+ __ fld_s(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, 1 * kFloatSize));
+
+ __ mov(scratch, Immediate(0));
+ Label done, push, loop;
+ __ bind(&loop);
+ __ cmp(scratch, spread_len);
+ __ j(equal, &done, Label::kNear);
+ __ mov(scratch2, FieldOperand(spread, scratch, times_pointer_size,
+ FixedArray::kHeaderSize));
+ __ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push);
+ __ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex);
+ __ bind(&push);
+ __ Push(scratch2);
+ __ inc(scratch);
+ __ jmp(&loop);
+ __ bind(&done);
+ __ PushReturnAddressFrom(return_address);
+
+ // Now Restore esi from stX0, edx/edi from stX1/stX2.
+ __ lea(esp, Operand(esp, -3 * kFloatSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fstp_s(MemOperand(esp, 4));
+ __ fstp_s(MemOperand(esp, 8));
+ __ pop(esi);
+ __ pop(edx);
+ __ pop(edi);
+ }
+}
+
+// static
+void Builtins::Generate_CallWithSpread(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edi : the target to call (can be any Object)
+ // -----------------------------------
+
+ // CheckSpreadAndPushToStack will push edx to save it.
+ __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
+ CheckSpreadAndPushToStack(masm);
+ __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
+ TailCallMode::kDisallow),
+ RelocInfo::CODE_TARGET);
+}
+
+// static
+void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the new target (checked to be a constructor)
+ // -- edi : the constructor to call (checked to be a JSFunction)
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // Calling convention for function specific ConstructStubs require
+ // ebx to contain either an AllocationSite or undefined.
+ __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex);
+
+ // Tail call to the function-specific construct stub (still in the caller
+ // context at this point).
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+}
+
+// static
+void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the new target (checked to be a constructor)
+ // -- edi : the constructor to call (checked to be a JSBoundFunction)
+ // -----------------------------------
+ __ AssertBoundFunction(edi);
+
+ // Push the [[BoundArguments]] onto the stack.
+ Generate_PushBoundArguments(masm);
+
+ // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
+ {
+ Label done;
+ __ cmp(edi, edx);
+ __ j(not_equal, &done, Label::kNear);
+ __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
+ __ bind(&done);
+ }
+
+ // Construct the [[BoundTargetFunction]] via the Construct builtin.
+ __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
+ __ mov(ecx, Operand::StaticVariable(
+ ExternalReference(Builtins::kConstruct, masm->isolate())));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+}
+
+// static
+void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edi : the constructor to call (checked to be a JSProxy)
+ // -- edx : the new target (either the same as the constructor or
+ // the JSFunction on which new was invoked initially)
+ // -----------------------------------
+
+ // Call into the Runtime for Proxy [[Construct]].
+ __ PopReturnAddressTo(ecx);
+ __ Push(edi);
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+ // Include the pushed new_target, constructor and the receiver.
+ __ add(eax, Immediate(3));
+ // Tail-call to the runtime.
+ __ JumpToExternalReference(
+ ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
+}
+
+// static
+void Builtins::Generate_Construct(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the new target (either the same as the constructor or
+ // the JSFunction on which new was invoked initially)
+ // -- edi : the constructor to call (can be any Object)
+ // -----------------------------------
+
+ // Check if target is a Smi.
+ Label non_constructor;
+ __ JumpIfSmi(edi, &non_constructor, Label::kNear);
+
+ // Dispatch based on instance type.
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+ __ j(equal, masm->isolate()->builtins()->ConstructFunction(),
+ RelocInfo::CODE_TARGET);
+
+ // Check if target has a [[Construct]] internal method.
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsConstructor));
+ __ j(zero, &non_constructor, Label::kNear);
+
+ // Only dispatch to bound functions after checking whether they are
+ // constructors.
+ __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
+ __ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(),
+ RelocInfo::CODE_TARGET);
+
+ // Only dispatch to proxies after checking whether they are constructors.
+ __ CmpInstanceType(ecx, JS_PROXY_TYPE);
+ __ j(equal, masm->isolate()->builtins()->ConstructProxy(),
+ RelocInfo::CODE_TARGET);
+
+ // Called Construct on an exotic Object with a [[Construct]] internal method.
+ {
+ // Overwrite the original receiver with the (original) target.
+ __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
+ // Let the "call_as_constructor_delegate" take care of the rest.
+ __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi);
+ __ Jump(masm->isolate()->builtins()->CallFunction(),
+ RelocInfo::CODE_TARGET);
+ }
+
+ // Called Construct on an Object that doesn't have a [[Construct]] internal
+ // method.
+ __ bind(&non_constructor);
+ __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
+ RelocInfo::CODE_TARGET);
+}
+
+// static
+void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : the number of arguments (not including the receiver)
+ // -- edx : the new target (either the same as the constructor or
+ // the JSFunction on which new was invoked initially)
+ // -- edi : the constructor to call (can be any Object)
+ // -----------------------------------
+
+ CheckSpreadAndPushToStack(masm);
+ __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+}
+
+// static
+void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edx : requested object size (untagged)
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ SmiTag(edx);
+ __ PopReturnAddressTo(ecx);
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+ __ Move(esi, Smi::kZero);
+ __ TailCallRuntime(Runtime::kAllocateInNewSpace);
+}
+
+// static
+void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edx : requested object size (untagged)
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ SmiTag(edx);
+ __ PopReturnAddressTo(ecx);
+ __ Push(edx);
+ __ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
+ __ PushReturnAddressFrom(ecx);
+ __ Move(esi, Smi::kZero);
+ __ TailCallRuntime(Runtime::kAllocateInTargetSpace);
+}
+
+// static
+void Builtins::Generate_Abort(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edx : message_id as Smi
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ PopReturnAddressTo(ecx);
+ __ Push(edx);
+ __ PushReturnAddressFrom(ecx);
+ __ Move(esi, Smi::kZero);
+ __ TailCallRuntime(Runtime::kAbort);
+}
+
+void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : actual number of arguments
+ // -- ebx : expected number of arguments
+ // -- edx : new target (passed through to callee)
+ // -- edi : function (passed through to callee)
+ // -----------------------------------
+
+ Label invoke, dont_adapt_arguments, stack_overflow;
+ __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
+
+ Label enough, too_few;
+ __ cmp(eax, ebx);
+ __ j(less, &too_few);
+ __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
+ __ j(equal, &dont_adapt_arguments);
+
+ { // Enough parameters: Actual >= expected.
+ __ bind(&enough);
+ EnterArgumentsAdaptorFrame(masm);
+ // edi is used as a scratch register. It should be restored from the frame
+ // when needed.
+ Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
+
+ // Copy receiver and all expected arguments.
+ const int offset = StandardFrameConstants::kCallerSPOffset;
+ __ lea(edi, Operand(ebp, eax, times_4, offset));
+ __ mov(eax, -1); // account for receiver
+
+ Label copy;
+ __ bind(&copy);
+ __ inc(eax);
+ __ push(Operand(edi, 0));
+ __ sub(edi, Immediate(kPointerSize));
+ __ cmp(eax, ebx);
+ __ j(less, &copy);
+ // eax now contains the expected number of arguments.
+ __ jmp(&invoke);
+ }
+
+ { // Too few parameters: Actual < expected.
+ __ bind(&too_few);
+ EnterArgumentsAdaptorFrame(masm);
+ // edi is used as a scratch register. It should be restored from the frame
+ // when needed.
+ Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
+
+ // Remember expected arguments in ecx.
+ __ mov(ecx, ebx);
+
+ // Copy receiver and all actual arguments.
+ const int offset = StandardFrameConstants::kCallerSPOffset;
+ __ lea(edi, Operand(ebp, eax, times_4, offset));
+ // ebx = expected - actual.
+ __ sub(ebx, eax);
+ // eax = -actual - 1
+ __ neg(eax);
+ __ sub(eax, Immediate(1));
+
+ Label copy;
+ __ bind(&copy);
+ __ inc(eax);
+ __ push(Operand(edi, 0));
+ __ sub(edi, Immediate(kPointerSize));
+ __ test(eax, eax);
+ __ j(not_zero, &copy);
+
+ // Fill remaining expected arguments with undefined values.
+ Label fill;
+ __ bind(&fill);
+ __ inc(eax);
+ __ push(Immediate(masm->isolate()->factory()->undefined_value()));
+ __ cmp(eax, ebx);
+ __ j(less, &fill);
+
+ // Restore expected arguments.
+ __ mov(eax, ecx);
+ }
+
+ // Call the entry point.
+ __ bind(&invoke);
+ // Restore function pointer.
+ __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
+ // eax : expected number of arguments
+ // edx : new target (passed through to callee)
+ // edi : function (passed through to callee)
+ __ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
+ __ call(ecx);
+
+ // Store offset of return address for deoptimizer.
+ masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
+
+ // Leave frame and return.
+ LeaveArgumentsAdaptorFrame(masm);
+ __ ret(0);
+
+ // -------------------------------------------
+ // Dont adapt arguments.
+ // -------------------------------------------
+ __ bind(&dont_adapt_arguments);
+ __ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
+ __ jmp(ecx);
+
+ __ bind(&stack_overflow);
+ {
+ FrameScope frame(masm, StackFrame::MANUAL);
+ __ CallRuntime(Runtime::kThrowStackOverflow);
+ __ int3();
+ }
+}
+
+static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
+ bool has_handler_frame) {
+ // Lookup the function in the JavaScript frame.
+ if (has_handler_frame) {
+ __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset));
+ } else {
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ }
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ // Pass function as argument.
+ __ push(eax);
+ __ CallRuntime(Runtime::kCompileForOnStackReplacement);
+ }
+
+ Label skip;
+ // If the code object is null, just return to the caller.
+ __ cmp(eax, Immediate(0));
+ __ j(not_equal, &skip, Label::kNear);
+ __ ret(0);
+
+ __ bind(&skip);
+
+ // Drop any potential handler frame that is be sitting on top of the actual
+ // JavaScript frame. This is the case then OSR is triggered from bytecode.
+ if (has_handler_frame) {
+ __ leave();
+ }
+
+ // Load deoptimization data from the code object.
+ __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
+
+ // Load the OSR entrypoint offset from the deoptimization data.
+ __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
+ DeoptimizationInputData::kOsrPcOffsetIndex) -
+ kHeapObjectTag));
+ __ SmiUntag(ebx);
+
+ // Compute the target address = code_obj + header_size + osr_offset
+ __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
+
+ // Overwrite the return address on the stack.
+ __ mov(Operand(esp, 0), eax);
+
+ // And "return" to the OSR entry point of the function.
+ __ ret(0);
+}
+
+void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
+ Generate_OnStackReplacementHelper(masm, false);
+}
+
+void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
+ Generate_OnStackReplacementHelper(masm, true);
+}
+
+#undef __
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/builtins/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/builtins/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/builtins/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/builtins/x87/OWNERS 2017-12-25 17:42:57.201465852 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/codegen.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/codegen.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/codegen.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/codegen.h 2017-12-25 17:42:57.205465793 +0100
@@ -59,6 +59,8 @@
#include "src/mips64/codegen-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_S390
#include "src/s390/codegen-s390.h" // NOLINT
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/codegen-x87.h" // NOLINT
#else
#error Unsupported target architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/code-stubs.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/code-stubs.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/code-stubs.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/code-stubs.h 2017-12-25 17:42:57.205465793 +0100
@@ -514,6 +514,8 @@
#include "src/mips64/code-stubs-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/s390/code-stubs-s390.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/code-stubs-x87.h"
#else
#error Unsupported target architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/c-linkage.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/c-linkage.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/c-linkage.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/c-linkage.cc 2017-12-25 17:42:57.205465793 +0100
@@ -50,6 +50,12 @@
rbx.bit() | r12.bit() | r13.bit() | r14.bit() | r15.bit()
#endif
+#elif V8_TARGET_ARCH_X87
+// ===========================================================================
+// == x87 ====================================================================
+// ===========================================================================
+#define CALLEE_SAVE_REGISTERS esi.bit() | edi.bit() | ebx.bit()
+
#elif V8_TARGET_ARCH_ARM
// ===========================================================================
// == arm ====================================================================
@@ -155,7 +161,7 @@
msig->parameter_count());
// Check the types of the signature.
// Currently no floating point parameters or returns are allowed because
- // on ia32, the FP top of stack is involved.
+ // on x87 and ia32, the FP top of stack is involved.
for (size_t i = 0; i < msig->return_count(); i++) {
MachineRepresentation rep = msig->GetReturn(i).representation();
CHECK_NE(MachineRepresentation::kFloat32, rep);
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/instruction-codes.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/instruction-codes.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/instruction-codes.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/instruction-codes.h 2017-12-25 17:42:57.205465793 +0100
@@ -23,6 +23,8 @@
#include "src/compiler/ppc/instruction-codes-ppc.h"
#elif V8_TARGET_ARCH_S390
#include "src/compiler/s390/instruction-codes-s390.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/compiler/x87/instruction-codes-x87.h"
#else
#define TARGET_ARCH_OPCODE_LIST(V)
#define TARGET_ADDRESSING_MODE_LIST(V)
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/wasm-linkage.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/wasm-linkage.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/wasm-linkage.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/wasm-linkage.cc 2017-12-25 17:42:57.205465793 +0100
@@ -69,6 +69,14 @@
#define FP_PARAM_REGISTERS xmm1, xmm2, xmm3, xmm4, xmm5, xmm6
#define FP_RETURN_REGISTERS xmm1, xmm2
+#elif V8_TARGET_ARCH_X87
+// ===========================================================================
+// == x87 ====================================================================
+// ===========================================================================
+#define GP_PARAM_REGISTERS eax, edx, ecx, ebx, esi
+#define GP_RETURN_REGISTERS eax, edx
+#define FP_RETURN_REGISTERS stX_0
+
#elif V8_TARGET_ARCH_ARM
// ===========================================================================
// == arm ====================================================================
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/code-generator-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/code-generator-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/code-generator-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/code-generator-x87.cc 2017-12-28 02:12:51.768596072 +0100
@@ -0,0 +1,2800 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/code-generator.h"
+
+#include "src/compilation-info.h"
+#include "src/compiler/code-generator-impl.h"
+#include "src/compiler/gap-resolver.h"
+#include "src/compiler/node-matchers.h"
+#include "src/compiler/osr.h"
+#include "src/frames.h"
+#include "src/x87/assembler-x87.h"
+#include "src/x87/frames-x87.h"
+#include "src/x87/macro-assembler-x87.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+#define __ tasm()->
+
+
+// Adds X87 specific methods for decoding operands.
+class X87OperandConverter : public InstructionOperandConverter {
+ public:
+ X87OperandConverter(CodeGenerator* gen, Instruction* instr)
+ : InstructionOperandConverter(gen, instr) {}
+
+ Operand InputOperand(size_t index, int extra = 0) {
+ return ToOperand(instr_->InputAt(index), extra);
+ }
+
+ Immediate InputImmediate(size_t index) {
+ return ToImmediate(instr_->InputAt(index));
+ }
+
+ Operand OutputOperand() { return ToOperand(instr_->Output()); }
+
+ Operand ToOperand(InstructionOperand* op, int extra = 0) {
+ if (op->IsRegister()) {
+ DCHECK(extra == 0);
+ return Operand(ToRegister(op));
+ }
+ DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
+ return SlotToOperand(AllocatedOperand::cast(op)->index(), extra);
+ }
+
+ Operand SlotToOperand(int slot, int extra = 0) {
+ FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
+ return Operand(offset.from_stack_pointer() ? esp : ebp,
+ offset.offset() + extra);
+ }
+
+ Operand HighOperand(InstructionOperand* op) {
+ DCHECK(op->IsFPStackSlot());
+ return ToOperand(op, kPointerSize);
+ }
+
+ Immediate ToImmediate(InstructionOperand* operand) {
+ Constant constant = ToConstant(operand);
+ if (constant.type() == Constant::kInt32 &&
+ RelocInfo::IsWasmReference(constant.rmode())) {
+ return Immediate(reinterpret_cast<Address>(constant.ToInt32()),
+ constant.rmode());
+ }
+ switch (constant.type()) {
+ case Constant::kInt32:
+ return Immediate(constant.ToInt32());
+ case Constant::kFloat32:
+ return Immediate::EmbeddedNumber(constant.ToFloat32());
+ case Constant::kFloat64:
+ return Immediate::EmbeddedNumber(constant.ToFloat64().value());
+ case Constant::kExternalReference:
+ return Immediate(constant.ToExternalReference());
+ case Constant::kHeapObject:
+ return Immediate(constant.ToHeapObject());
+ case Constant::kInt64:
+ break;
+ case Constant::kRpoNumber:
+ return Immediate::CodeRelativeOffset(ToLabel(operand));
+ }
+ UNREACHABLE();
+ }
+
+ static size_t NextOffset(size_t* offset) {
+ size_t i = *offset;
+ (*offset)++;
+ return i;
+ }
+
+ static ScaleFactor ScaleFor(AddressingMode one, AddressingMode mode) {
+ STATIC_ASSERT(0 == static_cast<int>(times_1));
+ STATIC_ASSERT(1 == static_cast<int>(times_2));
+ STATIC_ASSERT(2 == static_cast<int>(times_4));
+ STATIC_ASSERT(3 == static_cast<int>(times_8));
+ int scale = static_cast<int>(mode - one);
+ DCHECK(scale >= 0 && scale < 4);
+ return static_cast<ScaleFactor>(scale);
+ }
+
+ Operand MemoryOperand(size_t* offset) {
+ AddressingMode mode = AddressingModeField::decode(instr_->opcode());
+ switch (mode) {
+ case kMode_MR: {
+ Register base = InputRegister(NextOffset(offset));
+ int32_t disp = 0;
+ return Operand(base, disp);
+ }
+ case kMode_MRI: {
+ Register base = InputRegister(NextOffset(offset));
+ Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
+ return Operand(base, ctant.ToInt32(), ctant.rmode());
+ }
+ case kMode_MR1:
+ case kMode_MR2:
+ case kMode_MR4:
+ case kMode_MR8: {
+ Register base = InputRegister(NextOffset(offset));
+ Register index = InputRegister(NextOffset(offset));
+ ScaleFactor scale = ScaleFor(kMode_MR1, mode);
+ int32_t disp = 0;
+ return Operand(base, index, scale, disp);
+ }
+ case kMode_MR1I:
+ case kMode_MR2I:
+ case kMode_MR4I:
+ case kMode_MR8I: {
+ Register base = InputRegister(NextOffset(offset));
+ Register index = InputRegister(NextOffset(offset));
+ ScaleFactor scale = ScaleFor(kMode_MR1I, mode);
+ Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
+ return Operand(base, index, scale, ctant.ToInt32(), ctant.rmode());
+ }
+ case kMode_M1:
+ case kMode_M2:
+ case kMode_M4:
+ case kMode_M8: {
+ Register index = InputRegister(NextOffset(offset));
+ ScaleFactor scale = ScaleFor(kMode_M1, mode);
+ int32_t disp = 0;
+ return Operand(index, scale, disp);
+ }
+ case kMode_M1I:
+ case kMode_M2I:
+ case kMode_M4I:
+ case kMode_M8I: {
+ Register index = InputRegister(NextOffset(offset));
+ ScaleFactor scale = ScaleFor(kMode_M1I, mode);
+ Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
+ return Operand(index, scale, ctant.ToInt32(), ctant.rmode());
+ }
+ case kMode_MI: {
+ Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
+ return Operand(ctant.ToInt32(), ctant.rmode());
+ }
+ case kMode_None:
+ UNREACHABLE();
+ }
+ UNREACHABLE();
+ }
+
+ Operand MemoryOperand(size_t first_input = 0) {
+ return MemoryOperand(&first_input);
+ }
+};
+
+
+namespace {
+
+bool HasImmediateInput(Instruction* instr, size_t index) {
+ return instr->InputAt(index)->IsImmediate();
+}
+
+
+class OutOfLineLoadInteger final : public OutOfLineCode {
+ public:
+ OutOfLineLoadInteger(CodeGenerator* gen, Register result)
+ : OutOfLineCode(gen), result_(result) {}
+
+ void Generate() final { __ xor_(result_, result_); }
+
+ private:
+ Register const result_;
+};
+
+class OutOfLineLoadFloat32NaN final : public OutOfLineCode {
+ public:
+ OutOfLineLoadFloat32NaN(CodeGenerator* gen, X87Register result)
+ : OutOfLineCode(gen), result_(result) {}
+
+ void Generate() final {
+ DCHECK(result_.code() == 0);
+ USE(result_);
+ __ fstp(0);
+ __ push(Immediate(0xffc00000));
+ __ fld_s(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kFloatSize));
+ }
+
+ private:
+ X87Register const result_;
+};
+
+class OutOfLineLoadFloat64NaN final : public OutOfLineCode {
+ public:
+ OutOfLineLoadFloat64NaN(CodeGenerator* gen, X87Register result)
+ : OutOfLineCode(gen), result_(result) {}
+
+ void Generate() final {
+ DCHECK(result_.code() == 0);
+ USE(result_);
+ __ fstp(0);
+ __ push(Immediate(0xfff80000));
+ __ push(Immediate(0x00000000));
+ __ fld_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ }
+
+ private:
+ X87Register const result_;
+};
+
+class OutOfLineTruncateDoubleToI final : public OutOfLineCode {
+ public:
+ OutOfLineTruncateDoubleToI(CodeGenerator* gen, Register result,
+ X87Register input)
+ : OutOfLineCode(gen),
+ result_(result),
+ input_(input),
+ zone_(gen->zone()) {}
+
+ void Generate() final {
+ UNIMPLEMENTED();
+ USE(result_);
+ USE(input_);
+ }
+
+ private:
+ Register const result_;
+ X87Register const input_;
+ Zone* zone_;
+};
+
+
+class OutOfLineRecordWrite final : public OutOfLineCode {
+ public:
+ OutOfLineRecordWrite(CodeGenerator* gen, Register object, Operand operand,
+ Register value, Register scratch0, Register scratch1,
+ RecordWriteMode mode)
+ : OutOfLineCode(gen),
+ object_(object),
+ operand_(operand),
+ value_(value),
+ scratch0_(scratch0),
+ scratch1_(scratch1),
+ mode_(mode),
+ zone_(gen->zone()) {}
+
+ void Generate() final {
+ if (mode_ > RecordWriteMode::kValueIsPointer) {
+ __ JumpIfSmi(value_, exit());
+ }
+ __ CheckPageFlag(value_, scratch0_,
+ MemoryChunk::kPointersToHereAreInterestingMask, zero,
+ exit());
+ RememberedSetAction const remembered_set_action =
+ mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET
+ : OMIT_REMEMBERED_SET;
+ SaveFPRegsMode const save_fp_mode =
+ frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
+ __ lea(scratch1_, operand_);
+ __ CallStubDelayed(
+ new (zone_) RecordWriteStub(nullptr, object_, scratch0_, scratch1_,
+ remembered_set_action, save_fp_mode));
+ }
+
+ private:
+ Register const object_;
+ Operand const operand_;
+ Register const value_;
+ Register const scratch0_;
+ Register const scratch1_;
+ RecordWriteMode const mode_;
+ Zone* zone_;
+};
+
+} // namespace
+
+#define ASSEMBLE_CHECKED_LOAD_FLOAT(asm_instr, OutOfLineLoadNaN) \
+ do { \
+ auto result = i.OutputDoubleRegister(); \
+ auto offset = i.InputRegister(0); \
+ DCHECK(result.code() == 0); \
+ if (instr->InputAt(1)->IsRegister()) { \
+ __ cmp(offset, i.InputRegister(1)); \
+ } else { \
+ __ cmp(offset, i.InputImmediate(1)); \
+ } \
+ OutOfLineCode* ool = new (zone()) OutOfLineLoadNaN(this, result); \
+ __ j(above_equal, ool->entry()); \
+ __ fstp(0); \
+ __ asm_instr(i.MemoryOperand(2)); \
+ __ bind(ool->exit()); \
+ } while (false)
+
+#define ASSEMBLE_CHECKED_LOAD_INTEGER(asm_instr) \
+ do { \
+ auto result = i.OutputRegister(); \
+ auto offset = i.InputRegister(0); \
+ if (instr->InputAt(1)->IsRegister()) { \
+ __ cmp(offset, i.InputRegister(1)); \
+ } else { \
+ __ cmp(offset, i.InputImmediate(1)); \
+ } \
+ OutOfLineCode* ool = new (zone()) OutOfLineLoadInteger(this, result); \
+ __ j(above_equal, ool->entry()); \
+ __ asm_instr(result, i.MemoryOperand(2)); \
+ __ bind(ool->exit()); \
+ } while (false)
+
+
+#define ASSEMBLE_CHECKED_STORE_FLOAT(asm_instr) \
+ do { \
+ auto offset = i.InputRegister(0); \
+ if (instr->InputAt(1)->IsRegister()) { \
+ __ cmp(offset, i.InputRegister(1)); \
+ } else { \
+ __ cmp(offset, i.InputImmediate(1)); \
+ } \
+ Label done; \
+ DCHECK(i.InputDoubleRegister(2).code() == 0); \
+ __ j(above_equal, &done, Label::kNear); \
+ __ asm_instr(i.MemoryOperand(3)); \
+ __ bind(&done); \
+ } while (false)
+
+
+#define ASSEMBLE_CHECKED_STORE_INTEGER(asm_instr) \
+ do { \
+ auto offset = i.InputRegister(0); \
+ if (instr->InputAt(1)->IsRegister()) { \
+ __ cmp(offset, i.InputRegister(1)); \
+ } else { \
+ __ cmp(offset, i.InputImmediate(1)); \
+ } \
+ Label done; \
+ __ j(above_equal, &done, Label::kNear); \
+ if (instr->InputAt(2)->IsRegister()) { \
+ __ asm_instr(i.MemoryOperand(3), i.InputRegister(2)); \
+ } else { \
+ __ asm_instr(i.MemoryOperand(3), i.InputImmediate(2)); \
+ } \
+ __ bind(&done); \
+ } while (false)
+
+#define ASSEMBLE_COMPARE(asm_instr) \
+ do { \
+ if (AddressingModeField::decode(instr->opcode()) != kMode_None) { \
+ size_t index = 0; \
+ Operand left = i.MemoryOperand(&index); \
+ if (HasImmediateInput(instr, index)) { \
+ __ asm_instr(left, i.InputImmediate(index)); \
+ } else { \
+ __ asm_instr(left, i.InputRegister(index)); \
+ } \
+ } else { \
+ if (HasImmediateInput(instr, 1)) { \
+ if (instr->InputAt(0)->IsRegister()) { \
+ __ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \
+ } else { \
+ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \
+ } \
+ } else { \
+ if (instr->InputAt(1)->IsRegister()) { \
+ __ asm_instr(i.InputRegister(0), i.InputRegister(1)); \
+ } else { \
+ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \
+ } \
+ } \
+ } \
+ } while (0)
+
+#define ASSEMBLE_IEEE754_BINOP(name) \
+ do { \
+ /* Saves the esp into ebx */ \
+ __ push(ebx); \
+ __ mov(ebx, esp); \
+ /* Pass one double as argument on the stack. */ \
+ __ PrepareCallCFunction(4, eax); \
+ __ fstp(0); \
+ /* Load first operand from original stack */ \
+ __ fld_d(MemOperand(ebx, 4 + kDoubleSize)); \
+ /* Put first operand into stack for function call */ \
+ __ fstp_d(Operand(esp, 0 * kDoubleSize)); \
+ /* Load second operand from original stack */ \
+ __ fld_d(MemOperand(ebx, 4)); \
+ /* Put second operand into stack for function call */ \
+ __ fstp_d(Operand(esp, 1 * kDoubleSize)); \
+ __ CallCFunction( \
+ ExternalReference::ieee754_##name##_function(__ isolate()), 4); \
+ /* Restore the ebx */ \
+ __ pop(ebx); \
+ /* Return value is in st(0) on x87. */ \
+ __ lea(esp, Operand(esp, 2 * kDoubleSize)); \
+ } while (false)
+
+#define ASSEMBLE_IEEE754_UNOP(name) \
+ do { \
+ /* Saves the esp into ebx */ \
+ __ push(ebx); \
+ __ mov(ebx, esp); \
+ /* Pass one double as argument on the stack. */ \
+ __ PrepareCallCFunction(2, eax); \
+ __ fstp(0); \
+ /* Load operand from original stack */ \
+ __ fld_d(MemOperand(ebx, 4)); \
+ /* Put operand into stack for function call */ \
+ __ fstp_d(Operand(esp, 0)); \
+ __ CallCFunction( \
+ ExternalReference::ieee754_##name##_function(__ isolate()), 2); \
+ /* Restore the ebx */ \
+ __ pop(ebx); \
+ /* Return value is in st(0) on x87. */ \
+ __ lea(esp, Operand(esp, kDoubleSize)); \
+ } while (false)
+
+void CodeGenerator::AssembleDeconstructFrame() {
+ __ mov(esp, ebp);
+ __ pop(ebp);
+}
+
+void CodeGenerator::AssemblePrepareTailCall() {
+ if (frame_access_state()->has_frame()) {
+ __ mov(ebp, MemOperand(ebp, 0));
+ }
+ frame_access_state()->SetFrameAccessToSP();
+}
+
+void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg,
+ Register, Register,
+ Register) {
+ // There are not enough temp registers left on ia32 for a call instruction
+ // so we pick some scratch registers and save/restore them manually here.
+ int scratch_count = 3;
+ Register scratch1 = ebx;
+ Register scratch2 = ecx;
+ Register scratch3 = edx;
+ DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
+ Label done;
+
+ // Check if current frame is an arguments adaptor frame.
+ __ cmp(Operand(ebp, StandardFrameConstants::kContextOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(not_equal, &done, Label::kNear);
+
+ __ push(scratch1);
+ __ push(scratch2);
+ __ push(scratch3);
+
+ // Load arguments count from current arguments adaptor frame (note, it
+ // does not include receiver).
+ Register caller_args_count_reg = scratch1;
+ __ mov(caller_args_count_reg,
+ Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(caller_args_count_reg);
+
+ ParameterCount callee_args_count(args_reg);
+ __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
+ scratch3, ReturnAddressState::kOnStack, scratch_count);
+ __ pop(scratch3);
+ __ pop(scratch2);
+ __ pop(scratch1);
+
+ __ bind(&done);
+}
+
+namespace {
+
+void AdjustStackPointerForTailCall(TurboAssembler* tasm,
+ FrameAccessState* state,
+ int new_slot_above_sp,
+ bool allow_shrinkage = true) {
+ int current_sp_offset = state->GetSPToFPSlotCount() +
+ StandardFrameConstants::kFixedSlotCountAboveFp;
+ int stack_slot_delta = new_slot_above_sp - current_sp_offset;
+ if (stack_slot_delta > 0) {
+ tasm->sub(esp, Immediate(stack_slot_delta * kPointerSize));
+ state->IncreaseSPDelta(stack_slot_delta);
+ } else if (allow_shrinkage && stack_slot_delta < 0) {
+ tasm->add(esp, Immediate(-stack_slot_delta * kPointerSize));
+ state->IncreaseSPDelta(stack_slot_delta);
+ }
+}
+
+} // namespace
+
+void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
+ int first_unused_stack_slot) {
+ CodeGenerator::PushTypeFlags flags(kImmediatePush | kScalarPush);
+ ZoneVector<MoveOperands*> pushes(zone());
+ GetPushCompatibleMoves(instr, flags, &pushes);
+
+ if (!pushes.empty() &&
+ (LocationOperand::cast(pushes.back()->destination()).index() + 1 ==
+ first_unused_stack_slot)) {
+ X87OperandConverter g(this, instr);
+ for (auto move : pushes) {
+ LocationOperand destination_location(
+ LocationOperand::cast(move->destination()));
+ InstructionOperand source(move->source());
+ AdjustStackPointerForTailCall(tasm(), frame_access_state(),
+ destination_location.index());
+ if (source.IsStackSlot()) {
+ LocationOperand source_location(LocationOperand::cast(source));
+ __ push(g.SlotToOperand(source_location.index()));
+ } else if (source.IsRegister()) {
+ LocationOperand source_location(LocationOperand::cast(source));
+ __ push(source_location.GetRegister());
+ } else if (source.IsImmediate()) {
+ __ push(Immediate(ImmediateOperand::cast(source).inline_value()));
+ } else {
+ // Pushes of non-scalar data types is not supported.
+ UNIMPLEMENTED();
+ }
+ frame_access_state()->IncreaseSPDelta(1);
+ move->Eliminate();
+ }
+ }
+ AdjustStackPointerForTailCall(tasm(), frame_access_state(),
+ first_unused_stack_slot, false);
+}
+
+void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
+ int first_unused_stack_slot) {
+ AdjustStackPointerForTailCall(tasm(), frame_access_state(),
+ first_unused_stack_slot);
+}
+
+// Assembles an instruction after register allocation, producing machine code.
+CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
+ Instruction* instr) {
+ X87OperandConverter i(this, instr);
+ InstructionCode opcode = instr->opcode();
+ ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode);
+
+ switch (arch_opcode) {
+ case kArchCallCodeObject: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ EnsureSpaceForLazyDeopt();
+ if (HasImmediateInput(instr, 0)) {
+ Handle<Code> code = i.InputCode(0);
+ __ call(code, RelocInfo::CODE_TARGET);
+ } else {
+ Register reg = i.InputRegister(0);
+ __ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag));
+ __ call(reg);
+ }
+ RecordCallPosition(instr);
+ bool double_result =
+ instr->HasOutput() && instr->Output()->IsFPRegister();
+ if (double_result) {
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ }
+ __ fninit();
+ if (double_result) {
+ __ fld_d(Operand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ } else {
+ __ fld1();
+ }
+ frame_access_state()->ClearSPDelta();
+ break;
+ }
+ case kArchTailCallCodeObjectFromJSFunction:
+ case kArchTailCallCodeObject: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) {
+ AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
+ no_reg, no_reg, no_reg);
+ }
+ if (HasImmediateInput(instr, 0)) {
+ Handle<Code> code = i.InputCode(0);
+ __ jmp(code, RelocInfo::CODE_TARGET);
+ } else {
+ Register reg = i.InputRegister(0);
+ __ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag));
+ __ jmp(reg);
+ }
+ frame_access_state()->ClearSPDelta();
+ frame_access_state()->SetFrameAccessToDefault();
+ break;
+ }
+ case kArchTailCallAddress: {
+ CHECK(!HasImmediateInput(instr, 0));
+ Register reg = i.InputRegister(0);
+ __ jmp(reg);
+ frame_access_state()->ClearSPDelta();
+ frame_access_state()->SetFrameAccessToDefault();
+ break;
+ }
+ case kArchCallJSFunction: {
+ EnsureSpaceForLazyDeopt();
+ Register func = i.InputRegister(0);
+ if (FLAG_debug_code) {
+ // Check the function's context matches the context argument.
+ __ cmp(esi, FieldOperand(func, JSFunction::kContextOffset));
+ __ Assert(equal, kWrongFunctionContext);
+ }
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ call(FieldOperand(func, JSFunction::kCodeEntryOffset));
+ RecordCallPosition(instr);
+ bool double_result =
+ instr->HasOutput() && instr->Output()->IsFPRegister();
+ if (double_result) {
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ }
+ __ fninit();
+ if (double_result) {
+ __ fld_d(Operand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ } else {
+ __ fld1();
+ }
+ frame_access_state()->ClearSPDelta();
+ break;
+ }
+ case kArchTailCallJSFunctionFromJSFunction: {
+ Register func = i.InputRegister(0);
+ if (FLAG_debug_code) {
+ // Check the function's context matches the context argument.
+ __ cmp(esi, FieldOperand(func, JSFunction::kContextOffset));
+ __ Assert(equal, kWrongFunctionContext);
+ }
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, no_reg,
+ no_reg, no_reg);
+ __ jmp(FieldOperand(func, JSFunction::kCodeEntryOffset));
+ frame_access_state()->ClearSPDelta();
+ frame_access_state()->SetFrameAccessToDefault();
+ break;
+ }
+ case kArchPrepareCallCFunction: {
+ // Frame alignment requires using FP-relative frame addressing.
+ frame_access_state()->SetFrameAccessToFP();
+ int const num_parameters = MiscField::decode(instr->opcode());
+ __ PrepareCallCFunction(num_parameters, i.TempRegister(0));
+ break;
+ }
+ case kArchPrepareTailCall:
+ AssemblePrepareTailCall();
+ break;
+ case kArchCallCFunction: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ int const num_parameters = MiscField::decode(instr->opcode());
+ if (HasImmediateInput(instr, 0)) {
+ ExternalReference ref = i.InputExternalReference(0);
+ __ CallCFunction(ref, num_parameters);
+ } else {
+ Register func = i.InputRegister(0);
+ __ CallCFunction(func, num_parameters);
+ }
+ bool double_result =
+ instr->HasOutput() && instr->Output()->IsFPRegister();
+ if (double_result) {
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ }
+ __ fninit();
+ if (double_result) {
+ __ fld_d(Operand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ } else {
+ __ fld1();
+ }
+ frame_access_state()->SetFrameAccessToDefault();
+ frame_access_state()->ClearSPDelta();
+ break;
+ }
+ case kArchJmp:
+ AssembleArchJump(i.InputRpo(0));
+ break;
+ case kArchLookupSwitch:
+ AssembleArchLookupSwitch(instr);
+ break;
+ case kArchTableSwitch:
+ AssembleArchTableSwitch(instr);
+ break;
+ case kArchComment: {
+ Address comment_string = i.InputExternalReference(0).address();
+ __ RecordComment(reinterpret_cast<const char*>(comment_string));
+ break;
+ }
+ case kArchDebugBreak:
+ __ int3();
+ break;
+ case kArchNop:
+ case kArchThrowTerminator:
+ // don't emit code for nops.
+ break;
+ case kArchDeoptimize: {
+ int deopt_state_id =
+ BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore());
+ int double_register_param_count = 0;
+ int x87_layout = 0;
+ for (size_t i = 0; i < instr->InputCount(); i++) {
+ if (instr->InputAt(i)->IsFPRegister()) {
+ double_register_param_count++;
+ }
+ }
+ // Currently we use only one X87 register. If double_register_param_count
+ // is bigger than 1, it means duplicated double register is added to input
+ // of this instruction.
+ if (double_register_param_count > 0) {
+ x87_layout = (0 << 3) | 1;
+ }
+ // The layout of x87 register stack is loaded on the top of FPU register
+ // stack for deoptimization.
+ __ push(Immediate(x87_layout));
+ __ fild_s(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kPointerSize));
+
+ CodeGenResult result =
+ AssembleDeoptimizerCall(deopt_state_id, current_source_position_);
+ if (result != kSuccess) return result;
+ break;
+ }
+ case kArchRet:
+ AssembleReturn(instr->InputAt(0));
+ break;
+ case kArchFramePointer:
+ __ mov(i.OutputRegister(), ebp);
+ break;
+ case kArchStackPointer:
+ __ mov(i.OutputRegister(), esp);
+ break;
+ case kArchParentFramePointer:
+ if (frame_access_state()->has_frame()) {
+ __ mov(i.OutputRegister(), Operand(ebp, 0));
+ } else {
+ __ mov(i.OutputRegister(), ebp);
+ }
+ break;
+ case kArchTruncateDoubleToI: {
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fld_d(i.InputOperand(0));
+ }
+ __ TruncateX87TOSToI(i.OutputRegister());
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fstp(0);
+ }
+ break;
+ }
+ case kArchStoreWithWriteBarrier: {
+ RecordWriteMode mode =
+ static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
+ Register object = i.InputRegister(0);
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ Register value = i.InputRegister(index);
+ Register scratch0 = i.TempRegister(0);
+ Register scratch1 = i.TempRegister(1);
+ auto ool = new (zone()) OutOfLineRecordWrite(this, object, operand, value,
+ scratch0, scratch1, mode);
+ __ mov(operand, value);
+ __ CheckPageFlag(object, scratch0,
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ not_zero, ool->entry());
+ __ bind(ool->exit());
+ break;
+ }
+ case kArchStackSlot: {
+ FrameOffset offset =
+ frame_access_state()->GetFrameOffset(i.InputInt32(0));
+ Register base;
+ if (offset.from_stack_pointer()) {
+ base = esp;
+ } else {
+ base = ebp;
+ }
+ __ lea(i.OutputRegister(), Operand(base, offset.offset()));
+ break;
+ }
+ case kIeee754Float64Acos:
+ ASSEMBLE_IEEE754_UNOP(acos);
+ break;
+ case kIeee754Float64Acosh:
+ ASSEMBLE_IEEE754_UNOP(acosh);
+ break;
+ case kIeee754Float64Asin:
+ ASSEMBLE_IEEE754_UNOP(asin);
+ break;
+ case kIeee754Float64Asinh:
+ ASSEMBLE_IEEE754_UNOP(asinh);
+ break;
+ case kIeee754Float64Atan:
+ ASSEMBLE_IEEE754_UNOP(atan);
+ break;
+ case kIeee754Float64Atanh:
+ ASSEMBLE_IEEE754_UNOP(atanh);
+ break;
+ case kIeee754Float64Atan2:
+ ASSEMBLE_IEEE754_BINOP(atan2);
+ break;
+ case kIeee754Float64Cbrt:
+ ASSEMBLE_IEEE754_UNOP(cbrt);
+ break;
+ case kIeee754Float64Cos:
+ __ X87SetFPUCW(0x027F);
+ ASSEMBLE_IEEE754_UNOP(cos);
+ __ X87SetFPUCW(0x037F);
+ break;
+ case kIeee754Float64Cosh:
+ ASSEMBLE_IEEE754_UNOP(cosh);
+ break;
+ case kIeee754Float64Expm1:
+ __ X87SetFPUCW(0x027F);
+ ASSEMBLE_IEEE754_UNOP(expm1);
+ __ X87SetFPUCW(0x037F);
+ break;
+ case kIeee754Float64Exp:
+ ASSEMBLE_IEEE754_UNOP(exp);
+ break;
+ case kIeee754Float64Log:
+ ASSEMBLE_IEEE754_UNOP(log);
+ break;
+ case kIeee754Float64Log1p:
+ ASSEMBLE_IEEE754_UNOP(log1p);
+ break;
+ case kIeee754Float64Log2:
+ ASSEMBLE_IEEE754_UNOP(log2);
+ break;
+ case kIeee754Float64Log10:
+ ASSEMBLE_IEEE754_UNOP(log10);
+ break;
+ case kIeee754Float64Pow: {
+ // Keep the x87 FPU stack empty before calling stub code
+ __ fstp(0);
+ // Call the MathStub and put return value in stX_0
+ __ CallStubDelayed(new (zone())
+ MathPowStub(nullptr, MathPowStub::DOUBLE));
+ /* Return value is in st(0) on x87. */
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ break;
+ }
+ case kIeee754Float64Sin:
+ __ X87SetFPUCW(0x027F);
+ ASSEMBLE_IEEE754_UNOP(sin);
+ __ X87SetFPUCW(0x037F);
+ break;
+ case kIeee754Float64Sinh:
+ ASSEMBLE_IEEE754_UNOP(sinh);
+ break;
+ case kIeee754Float64Tan:
+ __ X87SetFPUCW(0x027F);
+ ASSEMBLE_IEEE754_UNOP(tan);
+ __ X87SetFPUCW(0x037F);
+ break;
+ case kIeee754Float64Tanh:
+ ASSEMBLE_IEEE754_UNOP(tanh);
+ break;
+ case kX87Add:
+ if (HasImmediateInput(instr, 1)) {
+ __ add(i.InputOperand(0), i.InputImmediate(1));
+ } else {
+ __ add(i.InputRegister(0), i.InputOperand(1));
+ }
+ break;
+ case kX87And:
+ if (HasImmediateInput(instr, 1)) {
+ __ and_(i.InputOperand(0), i.InputImmediate(1));
+ } else {
+ __ and_(i.InputRegister(0), i.InputOperand(1));
+ }
+ break;
+ case kX87Cmp:
+ ASSEMBLE_COMPARE(cmp);
+ break;
+ case kX87Cmp16:
+ ASSEMBLE_COMPARE(cmpw);
+ break;
+ case kX87Cmp8:
+ ASSEMBLE_COMPARE(cmpb);
+ break;
+ case kX87Test:
+ ASSEMBLE_COMPARE(test);
+ break;
+ case kX87Test16:
+ ASSEMBLE_COMPARE(test_w);
+ break;
+ case kX87Test8:
+ ASSEMBLE_COMPARE(test_b);
+ break;
+ case kX87Imul:
+ if (HasImmediateInput(instr, 1)) {
+ __ imul(i.OutputRegister(), i.InputOperand(0), i.InputInt32(1));
+ } else {
+ __ imul(i.OutputRegister(), i.InputOperand(1));
+ }
+ break;
+ case kX87ImulHigh:
+ __ imul(i.InputRegister(1));
+ break;
+ case kX87UmulHigh:
+ __ mul(i.InputRegister(1));
+ break;
+ case kX87Idiv:
+ __ cdq();
+ __ idiv(i.InputOperand(1));
+ break;
+ case kX87Udiv:
+ __ Move(edx, Immediate(0));
+ __ div(i.InputOperand(1));
+ break;
+ case kX87Not:
+ __ not_(i.OutputOperand());
+ break;
+ case kX87Neg:
+ __ neg(i.OutputOperand());
+ break;
+ case kX87Or:
+ if (HasImmediateInput(instr, 1)) {
+ __ or_(i.InputOperand(0), i.InputImmediate(1));
+ } else {
+ __ or_(i.InputRegister(0), i.InputOperand(1));
+ }
+ break;
+ case kX87Xor:
+ if (HasImmediateInput(instr, 1)) {
+ __ xor_(i.InputOperand(0), i.InputImmediate(1));
+ } else {
+ __ xor_(i.InputRegister(0), i.InputOperand(1));
+ }
+ break;
+ case kX87Sub:
+ if (HasImmediateInput(instr, 1)) {
+ __ sub(i.InputOperand(0), i.InputImmediate(1));
+ } else {
+ __ sub(i.InputRegister(0), i.InputOperand(1));
+ }
+ break;
+ case kX87Shl:
+ if (HasImmediateInput(instr, 1)) {
+ __ shl(i.OutputOperand(), i.InputInt5(1));
+ } else {
+ __ shl_cl(i.OutputOperand());
+ }
+ break;
+ case kX87Shr:
+ if (HasImmediateInput(instr, 1)) {
+ __ shr(i.OutputOperand(), i.InputInt5(1));
+ } else {
+ __ shr_cl(i.OutputOperand());
+ }
+ break;
+ case kX87Sar:
+ if (HasImmediateInput(instr, 1)) {
+ __ sar(i.OutputOperand(), i.InputInt5(1));
+ } else {
+ __ sar_cl(i.OutputOperand());
+ }
+ break;
+ case kX87AddPair: {
+ // i.OutputRegister(0) == i.InputRegister(0) ... left low word.
+ // i.InputRegister(1) ... left high word.
+ // i.InputRegister(2) ... right low word.
+ // i.InputRegister(3) ... right high word.
+ bool use_temp = false;
+ if (i.OutputRegister(0).code() == i.InputRegister(1).code() ||
+ i.OutputRegister(0).code() == i.InputRegister(3).code()) {
+ // We cannot write to the output register directly, because it would
+ // overwrite an input for adc. We have to use the temp register.
+ use_temp = true;
+ __ Move(i.TempRegister(0), i.InputRegister(0));
+ __ add(i.TempRegister(0), i.InputRegister(2));
+ } else {
+ __ add(i.OutputRegister(0), i.InputRegister(2));
+ }
+ if (i.OutputRegister(1).code() != i.InputRegister(1).code()) {
+ __ Move(i.OutputRegister(1), i.InputRegister(1));
+ }
+ __ adc(i.OutputRegister(1), Operand(i.InputRegister(3)));
+ if (use_temp) {
+ __ Move(i.OutputRegister(0), i.TempRegister(0));
+ }
+ break;
+ }
+ case kX87SubPair: {
+ // i.OutputRegister(0) == i.InputRegister(0) ... left low word.
+ // i.InputRegister(1) ... left high word.
+ // i.InputRegister(2) ... right low word.
+ // i.InputRegister(3) ... right high word.
+ bool use_temp = false;
+ if (i.OutputRegister(0).code() == i.InputRegister(1).code() ||
+ i.OutputRegister(0).code() == i.InputRegister(3).code()) {
+ // We cannot write to the output register directly, because it would
+ // overwrite an input for adc. We have to use the temp register.
+ use_temp = true;
+ __ Move(i.TempRegister(0), i.InputRegister(0));
+ __ sub(i.TempRegister(0), i.InputRegister(2));
+ } else {
+ __ sub(i.OutputRegister(0), i.InputRegister(2));
+ }
+ if (i.OutputRegister(1).code() != i.InputRegister(1).code()) {
+ __ Move(i.OutputRegister(1), i.InputRegister(1));
+ }
+ __ sbb(i.OutputRegister(1), Operand(i.InputRegister(3)));
+ if (use_temp) {
+ __ Move(i.OutputRegister(0), i.TempRegister(0));
+ }
+ break;
+ }
+ case kX87MulPair: {
+ __ imul(i.OutputRegister(1), i.InputOperand(0));
+ __ mov(i.TempRegister(0), i.InputOperand(1));
+ __ imul(i.TempRegister(0), i.InputOperand(2));
+ __ add(i.OutputRegister(1), i.TempRegister(0));
+ __ mov(i.OutputRegister(0), i.InputOperand(0));
+ // Multiplies the low words and stores them in eax and edx.
+ __ mul(i.InputRegister(2));
+ __ add(i.OutputRegister(1), i.TempRegister(0));
+
+ break;
+ }
+ case kX87ShlPair:
+ if (HasImmediateInput(instr, 2)) {
+ __ ShlPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
+ } else {
+ // Shift has been loaded into CL by the register allocator.
+ __ ShlPair_cl(i.InputRegister(1), i.InputRegister(0));
+ }
+ break;
+ case kX87ShrPair:
+ if (HasImmediateInput(instr, 2)) {
+ __ ShrPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
+ } else {
+ // Shift has been loaded into CL by the register allocator.
+ __ ShrPair_cl(i.InputRegister(1), i.InputRegister(0));
+ }
+ break;
+ case kX87SarPair:
+ if (HasImmediateInput(instr, 2)) {
+ __ SarPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
+ } else {
+ // Shift has been loaded into CL by the register allocator.
+ __ SarPair_cl(i.InputRegister(1), i.InputRegister(0));
+ }
+ break;
+ case kX87Ror:
+ if (HasImmediateInput(instr, 1)) {
+ __ ror(i.OutputOperand(), i.InputInt5(1));
+ } else {
+ __ ror_cl(i.OutputOperand());
+ }
+ break;
+ case kX87Lzcnt:
+ __ Lzcnt(i.OutputRegister(), i.InputOperand(0));
+ break;
+ case kX87Popcnt:
+ __ Popcnt(i.OutputRegister(), i.InputOperand(0));
+ break;
+ case kX87LoadFloat64Constant: {
+ InstructionOperand* source = instr->InputAt(0);
+ InstructionOperand* destination = instr->Output();
+ DCHECK(source->IsConstant());
+ X87OperandConverter g(this, nullptr);
+ Constant src_constant = g.ToConstant(source);
+
+ DCHECK_EQ(Constant::kFloat64, src_constant.type());
+ uint64_t src = src_constant.ToFloat64().AsUint64();
+ uint32_t lower = static_cast<uint32_t>(src);
+ uint32_t upper = static_cast<uint32_t>(src >> 32);
+ if (destination->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ mov(MemOperand(esp, 0), Immediate(lower));
+ __ mov(MemOperand(esp, kInt32Size), Immediate(upper));
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case kX87Float32Cmp: {
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ FCmp();
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ break;
+ }
+ case kX87Float32Add: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ faddp();
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float32Sub: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ fsubp();
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float32Mul: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ fmulp();
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float32Div: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ fdivp();
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+
+ case kX87Float32Sqrt: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, 0));
+ __ fsqrt();
+ __ lea(esp, Operand(esp, kFloatSize));
+ break;
+ }
+ case kX87Float32Abs: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, 0));
+ __ fabs();
+ __ lea(esp, Operand(esp, kFloatSize));
+ break;
+ }
+ case kX87Float32Neg: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, 0));
+ __ fchs();
+ __ lea(esp, Operand(esp, kFloatSize));
+ break;
+ }
+ case kX87Float32Round: {
+ RoundingMode mode =
+ static_cast<RoundingMode>(MiscField::decode(instr->opcode()));
+ // Set the correct round mode in x87 control register
+ __ X87SetRC((mode << 10));
+
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ InstructionOperand* input = instr->InputAt(0);
+ USE(input);
+ DCHECK(input->IsFPStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(i.InputOperand(0));
+ }
+ __ frndint();
+ __ X87SetRC(0x0000);
+ break;
+ }
+ case kX87Float64Add: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ faddp();
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float64Sub: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fsub_d(MemOperand(esp, 0));
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float64Mul: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fmul_d(MemOperand(esp, 0));
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float64Div: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fdiv_d(MemOperand(esp, 0));
+ // Clear stack.
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float64Mod: {
+ FrameScope frame_scope(tasm(), StackFrame::MANUAL);
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ mov(eax, esp);
+ __ PrepareCallCFunction(4, eax);
+ __ fstp(0);
+ __ fld_d(MemOperand(eax, 0));
+ __ fstp_d(Operand(esp, 1 * kDoubleSize));
+ __ fld_d(MemOperand(eax, kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
+ 4);
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ break;
+ }
+ case kX87Float32Max: {
+ Label compare_swap, done_compare;
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ fld(1);
+ __ fld(1);
+ __ FCmp();
+
+ auto ool =
+ new (zone()) OutOfLineLoadFloat32NaN(this, i.OutputDoubleRegister());
+ __ j(parity_even, ool->entry());
+ __ j(below, &done_compare, Label::kNear);
+ __ j(above, &compare_swap, Label::kNear);
+ __ push(eax);
+ __ lea(esp, Operand(esp, -kFloatSize));
+ __ fld(1);
+ __ fstp_s(Operand(esp, 0));
+ __ mov(eax, MemOperand(esp, 0));
+ __ and_(eax, Immediate(0x80000000));
+ __ lea(esp, Operand(esp, kFloatSize));
+ __ pop(eax);
+ __ j(zero, &done_compare, Label::kNear);
+
+ __ bind(&compare_swap);
+ __ bind(ool->exit());
+ __ fxch(1);
+
+ __ bind(&done_compare);
+ __ fstp(0);
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ break;
+ }
+ case kX87Float64Max: {
+ Label compare_swap, done_compare;
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fld_d(MemOperand(esp, 0));
+ __ fld(1);
+ __ fld(1);
+ __ FCmp();
+
+ auto ool =
+ new (zone()) OutOfLineLoadFloat64NaN(this, i.OutputDoubleRegister());
+ __ j(parity_even, ool->entry());
+ __ j(below, &done_compare, Label::kNear);
+ __ j(above, &compare_swap, Label::kNear);
+ __ push(eax);
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fld(1);
+ __ fstp_d(Operand(esp, 0));
+ __ mov(eax, MemOperand(esp, 4));
+ __ and_(eax, Immediate(0x80000000));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ __ pop(eax);
+ __ j(zero, &done_compare, Label::kNear);
+
+ __ bind(&compare_swap);
+ __ bind(ool->exit());
+ __ fxch(1);
+
+ __ bind(&done_compare);
+ __ fstp(0);
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ break;
+ }
+ case kX87Float32Min: {
+ Label compare_swap, done_compare;
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, kFloatSize));
+ __ fld_s(MemOperand(esp, 0));
+ __ fld(1);
+ __ fld(1);
+ __ FCmp();
+
+ auto ool =
+ new (zone()) OutOfLineLoadFloat32NaN(this, i.OutputDoubleRegister());
+ __ j(parity_even, ool->entry());
+ __ j(above, &done_compare, Label::kNear);
+ __ j(below, &compare_swap, Label::kNear);
+ __ push(eax);
+ __ lea(esp, Operand(esp, -kFloatSize));
+ __ fld(0);
+ __ fstp_s(Operand(esp, 0));
+ __ mov(eax, MemOperand(esp, 0));
+ __ and_(eax, Immediate(0x80000000));
+ __ lea(esp, Operand(esp, kFloatSize));
+ __ pop(eax);
+ __ j(zero, &done_compare, Label::kNear);
+
+ __ bind(&compare_swap);
+ __ bind(ool->exit());
+ __ fxch(1);
+
+ __ bind(&done_compare);
+ __ fstp(0);
+ __ lea(esp, Operand(esp, 2 * kFloatSize));
+ break;
+ }
+ case kX87Float64Min: {
+ Label compare_swap, done_compare;
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fld_d(MemOperand(esp, 0));
+ __ fld(1);
+ __ fld(1);
+ __ FCmp();
+
+ auto ool =
+ new (zone()) OutOfLineLoadFloat64NaN(this, i.OutputDoubleRegister());
+ __ j(parity_even, ool->entry());
+ __ j(above, &done_compare, Label::kNear);
+ __ j(below, &compare_swap, Label::kNear);
+ __ push(eax);
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fld(0);
+ __ fstp_d(Operand(esp, 0));
+ __ mov(eax, MemOperand(esp, 4));
+ __ and_(eax, Immediate(0x80000000));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ __ pop(eax);
+ __ j(zero, &done_compare, Label::kNear);
+
+ __ bind(&compare_swap);
+ __ bind(ool->exit());
+ __ fxch(1);
+
+ __ bind(&done_compare);
+ __ fstp(0);
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ break;
+ }
+ case kX87Float64Abs: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ fabs();
+ __ lea(esp, Operand(esp, kDoubleSize));
+ break;
+ }
+ case kX87Float64Neg: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ fchs();
+ __ lea(esp, Operand(esp, kDoubleSize));
+ break;
+ }
+ case kX87Int32ToFloat32: {
+ InstructionOperand* input = instr->InputAt(0);
+ DCHECK(input->IsRegister() || input->IsStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ if (input->IsRegister()) {
+ Register input_reg = i.InputRegister(0);
+ __ push(input_reg);
+ __ fild_s(Operand(esp, 0));
+ __ pop(input_reg);
+ } else {
+ __ fild_s(i.InputOperand(0));
+ }
+ break;
+ }
+ case kX87Uint32ToFloat32: {
+ InstructionOperand* input = instr->InputAt(0);
+ DCHECK(input->IsRegister() || input->IsStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ Label msb_set_src;
+ Label jmp_return;
+ // Put input integer into eax(tmporarilly)
+ __ push(eax);
+ if (input->IsRegister())
+ __ mov(eax, i.InputRegister(0));
+ else
+ __ mov(eax, i.InputOperand(0));
+
+ __ test(eax, eax);
+ __ j(sign, &msb_set_src, Label::kNear);
+ __ push(eax);
+ __ fild_s(Operand(esp, 0));
+ __ pop(eax);
+
+ __ jmp(&jmp_return, Label::kNear);
+ __ bind(&msb_set_src);
+ // Need another temp reg
+ __ push(ebx);
+ __ mov(ebx, eax);
+ __ shr(eax, 1);
+ // Recover the least significant bit to avoid rounding errors.
+ __ and_(ebx, Immediate(1));
+ __ or_(eax, ebx);
+ __ push(eax);
+ __ fild_s(Operand(esp, 0));
+ __ pop(eax);
+ __ fld(0);
+ __ faddp();
+ // Restore the ebx
+ __ pop(ebx);
+ __ bind(&jmp_return);
+ // Restore the eax
+ __ pop(eax);
+ break;
+ }
+ case kX87Int32ToFloat64: {
+ InstructionOperand* input = instr->InputAt(0);
+ DCHECK(input->IsRegister() || input->IsStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ if (input->IsRegister()) {
+ Register input_reg = i.InputRegister(0);
+ __ push(input_reg);
+ __ fild_s(Operand(esp, 0));
+ __ pop(input_reg);
+ } else {
+ __ fild_s(i.InputOperand(0));
+ }
+ break;
+ }
+ case kX87Float32ToFloat64: {
+ InstructionOperand* input = instr->InputAt(0);
+ if (input->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ DCHECK(input->IsFPStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(i.InputOperand(0));
+ }
+ break;
+ }
+ case kX87Uint32ToFloat64: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ LoadUint32NoSSE2(i.InputRegister(0));
+ break;
+ }
+ case kX87Float32ToInt32: {
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fld_s(i.InputOperand(0));
+ }
+ __ TruncateX87TOSToI(i.OutputRegister(0));
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fstp(0);
+ }
+ break;
+ }
+ case kX87Float32ToUint32: {
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fld_s(i.InputOperand(0));
+ }
+ Label success;
+ __ TruncateX87TOSToI(i.OutputRegister(0));
+ __ test(i.OutputRegister(0), i.OutputRegister(0));
+ __ j(positive, &success);
+ // Need to reserve the input float32 data.
+ __ fld(0);
+ __ push(Immediate(INT32_MIN));
+ __ fild_s(Operand(esp, 0));
+ __ lea(esp, Operand(esp, kPointerSize));
+ __ faddp();
+ __ TruncateX87TOSToI(i.OutputRegister(0));
+ __ or_(i.OutputRegister(0), Immediate(0x80000000));
+ // Only keep input float32 data in x87 stack when return.
+ __ fstp(0);
+ __ bind(&success);
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fstp(0);
+ }
+ break;
+ }
+ case kX87Float64ToInt32: {
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fld_d(i.InputOperand(0));
+ }
+ __ TruncateX87TOSToI(i.OutputRegister(0));
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fstp(0);
+ }
+ break;
+ }
+ case kX87Float64ToFloat32: {
+ InstructionOperand* input = instr->InputAt(0);
+ if (input->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ DCHECK(input->IsFPStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(i.InputOperand(0));
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fld_s(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ }
+ break;
+ }
+ case kX87Float64ToUint32: {
+ __ push_imm32(-2147483648);
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fld_d(i.InputOperand(0));
+ }
+ __ fild_s(Operand(esp, 0));
+ __ fld(1);
+ __ faddp();
+ __ TruncateX87TOSToI(i.OutputRegister(0));
+ __ add(esp, Immediate(kInt32Size));
+ __ add(i.OutputRegister(), Immediate(0x80000000));
+ __ fstp(0);
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ __ fstp(0);
+ }
+ break;
+ }
+ case kX87Float64ExtractHighWord32: {
+ if (instr->InputAt(0)->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fst_d(MemOperand(esp, 0));
+ __ mov(i.OutputRegister(), MemOperand(esp, kDoubleSize / 2));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ InstructionOperand* input = instr->InputAt(0);
+ USE(input);
+ DCHECK(input->IsFPStackSlot());
+ __ mov(i.OutputRegister(), i.InputOperand(0, kDoubleSize / 2));
+ }
+ break;
+ }
+ case kX87Float64ExtractLowWord32: {
+ if (instr->InputAt(0)->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fst_d(MemOperand(esp, 0));
+ __ mov(i.OutputRegister(), MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ InstructionOperand* input = instr->InputAt(0);
+ USE(input);
+ DCHECK(input->IsFPStackSlot());
+ __ mov(i.OutputRegister(), i.InputOperand(0));
+ }
+ break;
+ }
+ case kX87Float64InsertHighWord32: {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_d(MemOperand(esp, 0));
+ __ mov(MemOperand(esp, kDoubleSize / 2), i.InputRegister(1));
+ __ fld_d(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ break;
+ }
+ case kX87Float64InsertLowWord32: {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_d(MemOperand(esp, 0));
+ __ mov(MemOperand(esp, 0), i.InputRegister(1));
+ __ fld_d(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ break;
+ }
+ case kX87Float64Sqrt: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ X87SetFPUCW(0x027F);
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ fsqrt();
+ __ lea(esp, Operand(esp, kDoubleSize));
+ __ X87SetFPUCW(0x037F);
+ break;
+ }
+ case kX87Float64Round: {
+ RoundingMode mode =
+ static_cast<RoundingMode>(MiscField::decode(instr->opcode()));
+ // Set the correct round mode in x87 control register
+ __ X87SetRC((mode << 10));
+
+ if (!instr->InputAt(0)->IsFPRegister()) {
+ InstructionOperand* input = instr->InputAt(0);
+ USE(input);
+ DCHECK(input->IsFPStackSlot());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(i.InputOperand(0));
+ }
+ __ frndint();
+ __ X87SetRC(0x0000);
+ break;
+ }
+ case kX87Float64Cmp: {
+ __ fld_d(MemOperand(esp, kDoubleSize));
+ __ fld_d(MemOperand(esp, 0));
+ __ FCmp();
+ __ lea(esp, Operand(esp, 2 * kDoubleSize));
+ break;
+ }
+ case kX87Float64SilenceNaN: {
+ Label end, return_qnan;
+ __ fstp(0);
+ __ push(ebx);
+ // Load Half word of HoleNan(SNaN) into ebx
+ __ mov(ebx, MemOperand(esp, 2 * kInt32Size));
+ __ cmp(ebx, Immediate(kHoleNanUpper32));
+ // Check input is HoleNaN(SNaN)?
+ __ j(equal, &return_qnan, Label::kNear);
+ // If input isn't HoleNaN(SNaN), just load it and return
+ __ fld_d(MemOperand(esp, 1 * kInt32Size));
+ __ jmp(&end);
+ __ bind(&return_qnan);
+ // If input is HoleNaN(SNaN), Return QNaN
+ __ push(Immediate(0xffffffff));
+ __ push(Immediate(0xfff7ffff));
+ __ fld_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ __ bind(&end);
+ __ pop(ebx);
+ // Clear stack.
+ __ lea(esp, Operand(esp, 1 * kDoubleSize));
+ break;
+ }
+ case kX87Movsxbl:
+ __ movsx_b(i.OutputRegister(), i.MemoryOperand());
+ break;
+ case kX87Movzxbl:
+ __ movzx_b(i.OutputRegister(), i.MemoryOperand());
+ break;
+ case kX87Movb: {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ if (HasImmediateInput(instr, index)) {
+ __ mov_b(operand, i.InputInt8(index));
+ } else {
+ __ mov_b(operand, i.InputRegister(index));
+ }
+ break;
+ }
+ case kX87Movsxwl:
+ __ movsx_w(i.OutputRegister(), i.MemoryOperand());
+ break;
+ case kX87Movzxwl:
+ __ movzx_w(i.OutputRegister(), i.MemoryOperand());
+ break;
+ case kX87Movw: {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ if (HasImmediateInput(instr, index)) {
+ __ mov_w(operand, i.InputInt16(index));
+ } else {
+ __ mov_w(operand, i.InputRegister(index));
+ }
+ break;
+ }
+ case kX87Movl:
+ if (instr->HasOutput()) {
+ __ mov(i.OutputRegister(), i.MemoryOperand());
+ } else {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ if (HasImmediateInput(instr, index)) {
+ __ mov(operand, i.InputImmediate(index));
+ } else {
+ __ mov(operand, i.InputRegister(index));
+ }
+ }
+ break;
+ case kX87Movsd: {
+ if (instr->HasOutput()) {
+ X87Register output = i.OutputDoubleRegister();
+ USE(output);
+ DCHECK(output.code() == 0);
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_d(i.MemoryOperand());
+ } else {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ __ fst_d(operand);
+ }
+ break;
+ }
+ case kX87Movss: {
+ if (instr->HasOutput()) {
+ X87Register output = i.OutputDoubleRegister();
+ USE(output);
+ DCHECK(output.code() == 0);
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ __ fld_s(i.MemoryOperand());
+ } else {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ __ fst_s(operand);
+ }
+ break;
+ }
+ case kX87BitcastFI: {
+ __ mov(i.OutputRegister(), MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kFloatSize));
+ break;
+ }
+ case kX87BitcastIF: {
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ __ fstp(0);
+ if (instr->InputAt(0)->IsRegister()) {
+ __ lea(esp, Operand(esp, -kFloatSize));
+ __ mov(MemOperand(esp, 0), i.InputRegister(0));
+ __ fld_s(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kFloatSize));
+ } else {
+ __ fld_s(i.InputOperand(0));
+ }
+ break;
+ }
+ case kX87Lea: {
+ AddressingMode mode = AddressingModeField::decode(instr->opcode());
+ // Shorten "leal" to "addl", "subl" or "shll" if the register allocation
+ // and addressing mode just happens to work out. The "addl"/"subl" forms
+ // in these cases are faster based on measurements.
+ if (mode == kMode_MI) {
+ __ Move(i.OutputRegister(), Immediate(i.InputInt32(0)));
+ } else if (i.InputRegister(0).is(i.OutputRegister())) {
+ if (mode == kMode_MRI) {
+ int32_t constant_summand = i.InputInt32(1);
+ if (constant_summand > 0) {
+ __ add(i.OutputRegister(), Immediate(constant_summand));
+ } else if (constant_summand < 0) {
+ __ sub(i.OutputRegister(), Immediate(-constant_summand));
+ }
+ } else if (mode == kMode_MR1) {
+ if (i.InputRegister(1).is(i.OutputRegister())) {
+ __ shl(i.OutputRegister(), 1);
+ } else {
+ __ add(i.OutputRegister(), i.InputRegister(1));
+ }
+ } else if (mode == kMode_M2) {
+ __ shl(i.OutputRegister(), 1);
+ } else if (mode == kMode_M4) {
+ __ shl(i.OutputRegister(), 2);
+ } else if (mode == kMode_M8) {
+ __ shl(i.OutputRegister(), 3);
+ } else {
+ __ lea(i.OutputRegister(), i.MemoryOperand());
+ }
+ } else if (mode == kMode_MR1 &&
+ i.InputRegister(1).is(i.OutputRegister())) {
+ __ add(i.OutputRegister(), i.InputRegister(0));
+ } else {
+ __ lea(i.OutputRegister(), i.MemoryOperand());
+ }
+ break;
+ }
+ case kX87Push:
+ if (instr->InputAt(0)->IsFPRegister()) {
+ auto allocated = AllocatedOperand::cast(*instr->InputAt(0));
+ if (allocated.representation() == MachineRepresentation::kFloat32) {
+ __ sub(esp, Immediate(kFloatSize));
+ __ fst_s(Operand(esp, 0));
+ frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize);
+ } else {
+ DCHECK(allocated.representation() == MachineRepresentation::kFloat64);
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fst_d(Operand(esp, 0));
+ frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
+ }
+ } else if (instr->InputAt(0)->IsFPStackSlot()) {
+ auto allocated = AllocatedOperand::cast(*instr->InputAt(0));
+ if (allocated.representation() == MachineRepresentation::kFloat32) {
+ __ sub(esp, Immediate(kFloatSize));
+ __ fld_s(i.InputOperand(0));
+ __ fstp_s(MemOperand(esp, 0));
+ frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize);
+ } else {
+ DCHECK(allocated.representation() == MachineRepresentation::kFloat64);
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fld_d(i.InputOperand(0));
+ __ fstp_d(MemOperand(esp, 0));
+ frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
+ }
+ } else if (HasImmediateInput(instr, 0)) {
+ __ push(i.InputImmediate(0));
+ frame_access_state()->IncreaseSPDelta(1);
+ } else {
+ __ push(i.InputOperand(0));
+ frame_access_state()->IncreaseSPDelta(1);
+ }
+ break;
+ case kX87Poke: {
+ int const slot = MiscField::decode(instr->opcode());
+ if (HasImmediateInput(instr, 0)) {
+ __ mov(Operand(esp, slot * kPointerSize), i.InputImmediate(0));
+ } else {
+ __ mov(Operand(esp, slot * kPointerSize), i.InputRegister(0));
+ }
+ break;
+ }
+ case kX87Xchgb: {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ __ xchg_b(i.InputRegister(index), operand);
+ break;
+ }
+ case kX87Xchgw: {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ __ xchg_w(i.InputRegister(index), operand);
+ break;
+ }
+ case kX87Xchgl: {
+ size_t index = 0;
+ Operand operand = i.MemoryOperand(&index);
+ __ xchg(i.InputRegister(index), operand);
+ break;
+ }
+ case kX87PushFloat32:
+ __ lea(esp, Operand(esp, -kFloatSize));
+ if (instr->InputAt(0)->IsFPStackSlot()) {
+ __ fld_s(i.InputOperand(0));
+ __ fstp_s(MemOperand(esp, 0));
+ } else if (instr->InputAt(0)->IsFPRegister()) {
+ __ fst_s(MemOperand(esp, 0));
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ case kX87PushFloat64:
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ if (instr->InputAt(0)->IsFPStackSlot()) {
+ __ fld_d(i.InputOperand(0));
+ __ fstp_d(MemOperand(esp, 0));
+ } else if (instr->InputAt(0)->IsFPRegister()) {
+ __ fst_d(MemOperand(esp, 0));
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ case kCheckedLoadInt8:
+ ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_b);
+ break;
+ case kCheckedLoadUint8:
+ ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_b);
+ break;
+ case kCheckedLoadInt16:
+ ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_w);
+ break;
+ case kCheckedLoadUint16:
+ ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_w);
+ break;
+ case kCheckedLoadWord32:
+ ASSEMBLE_CHECKED_LOAD_INTEGER(mov);
+ break;
+ case kCheckedLoadFloat32:
+ ASSEMBLE_CHECKED_LOAD_FLOAT(fld_s, OutOfLineLoadFloat32NaN);
+ break;
+ case kCheckedLoadFloat64:
+ ASSEMBLE_CHECKED_LOAD_FLOAT(fld_d, OutOfLineLoadFloat64NaN);
+ break;
+ case kCheckedStoreWord8:
+ ASSEMBLE_CHECKED_STORE_INTEGER(mov_b);
+ break;
+ case kCheckedStoreWord16:
+ ASSEMBLE_CHECKED_STORE_INTEGER(mov_w);
+ break;
+ case kCheckedStoreWord32:
+ ASSEMBLE_CHECKED_STORE_INTEGER(mov);
+ break;
+ case kCheckedStoreFloat32:
+ ASSEMBLE_CHECKED_STORE_FLOAT(fst_s);
+ break;
+ case kCheckedStoreFloat64:
+ ASSEMBLE_CHECKED_STORE_FLOAT(fst_d);
+ break;
+ case kX87StackCheck: {
+ ExternalReference const stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ break;
+ }
+ case kCheckedLoadWord64:
+ case kCheckedStoreWord64:
+ UNREACHABLE(); // currently unsupported checked int64 load/store.
+ break;
+ case kAtomicLoadInt8:
+ case kAtomicLoadUint8:
+ case kAtomicLoadInt16:
+ case kAtomicLoadUint16:
+ case kAtomicLoadWord32:
+ case kAtomicStoreWord8:
+ case kAtomicStoreWord16:
+ case kAtomicStoreWord32:
+ UNREACHABLE(); // Won't be generated by instruction selector.
+ break;
+ }
+ return kSuccess;
+} // NOLINT(readability/fn_size)
+
+static Condition FlagsConditionToCondition(FlagsCondition condition) {
+ switch (condition) {
+ case kUnorderedEqual:
+ case kEqual:
+ return equal;
+ break;
+ case kUnorderedNotEqual:
+ case kNotEqual:
+ return not_equal;
+ break;
+ case kSignedLessThan:
+ return less;
+ break;
+ case kSignedGreaterThanOrEqual:
+ return greater_equal;
+ break;
+ case kSignedLessThanOrEqual:
+ return less_equal;
+ break;
+ case kSignedGreaterThan:
+ return greater;
+ break;
+ case kUnsignedLessThan:
+ return below;
+ break;
+ case kUnsignedGreaterThanOrEqual:
+ return above_equal;
+ break;
+ case kUnsignedLessThanOrEqual:
+ return below_equal;
+ break;
+ case kUnsignedGreaterThan:
+ return above;
+ break;
+ case kOverflow:
+ return overflow;
+ break;
+ case kNotOverflow:
+ return no_overflow;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+// Assembles a branch after an instruction.
+void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
+ Label::Distance flabel_distance =
+ branch->fallthru ? Label::kNear : Label::kFar;
+
+ Label done;
+ Label tlabel_tmp;
+ Label flabel_tmp;
+ Label* tlabel = &tlabel_tmp;
+ Label* flabel = &flabel_tmp;
+
+ Label* tlabel_dst = branch->true_label;
+ Label* flabel_dst = branch->false_label;
+
+ if (branch->condition == kUnorderedEqual) {
+ __ j(parity_even, flabel, flabel_distance);
+ } else if (branch->condition == kUnorderedNotEqual) {
+ __ j(parity_even, tlabel);
+ }
+ __ j(FlagsConditionToCondition(branch->condition), tlabel);
+
+ // Add a jump if not falling through to the next block.
+ if (!branch->fallthru) __ jmp(flabel);
+
+ __ jmp(&done);
+ __ bind(&tlabel_tmp);
+ FlagsMode mode = FlagsModeField::decode(instr->opcode());
+ if (mode == kFlags_deoptimize) {
+ int double_register_param_count = 0;
+ int x87_layout = 0;
+ for (size_t i = 0; i < instr->InputCount(); i++) {
+ if (instr->InputAt(i)->IsFPRegister()) {
+ double_register_param_count++;
+ }
+ }
+ // Currently we use only one X87 register. If double_register_param_count
+ // is bigger than 1, it means duplicated double register is added to input
+ // of this instruction.
+ if (double_register_param_count > 0) {
+ x87_layout = (0 << 3) | 1;
+ }
+ // The layout of x87 register stack is loaded on the top of FPU register
+ // stack for deoptimization.
+ __ push(Immediate(x87_layout));
+ __ fild_s(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kPointerSize));
+ }
+ __ jmp(tlabel_dst);
+ __ bind(&flabel_tmp);
+ __ jmp(flabel_dst);
+ __ bind(&done);
+}
+
+
+void CodeGenerator::AssembleArchJump(RpoNumber target) {
+ if (!IsNextInAssemblyOrder(target)) __ jmp(GetLabel(target));
+}
+
+void CodeGenerator::AssembleArchTrap(Instruction* instr,
+ FlagsCondition condition) {
+ class OutOfLineTrap final : public OutOfLineCode {
+ public:
+ OutOfLineTrap(CodeGenerator* gen, bool frame_elided, Instruction* instr)
+ : OutOfLineCode(gen),
+ frame_elided_(frame_elided),
+ instr_(instr),
+ gen_(gen) {}
+
+ void Generate() final {
+ X87OperandConverter i(gen_, instr_);
+
+ Builtins::Name trap_id =
+ static_cast<Builtins::Name>(i.InputInt32(instr_->InputCount() - 1));
+ bool old_has_frame = __ has_frame();
+ if (frame_elided_) {
+ __ set_has_frame(true);
+ __ EnterFrame(StackFrame::WASM_COMPILED);
+ }
+ GenerateCallToTrap(trap_id);
+ if (frame_elided_) {
+ __ set_has_frame(old_has_frame);
+ }
+ }
+
+ private:
+ void GenerateCallToTrap(Runtime::FunctionId trap_id) {
+ if (trap_id == Builtins::builtin_count) {
+ // We cannot test calls to the runtime in cctest/test-run-wasm.
+ // Therefore we emit a call to C here instead of a call to the runtime.
+ __ PrepareCallCFunction(0, esi);
+ __ CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(
+ __ isolate()),
+ 0);
+ __ LeaveFrame(StackFrame::WASM_COMPILED);
+ __ Ret();
+ } else {
+ gen_->AssembleSourcePosition(instr_);
+ __ Call(__ isolate()->builtins()->builtin_handle(trap_id),
+ RelocInfo::CODE_TARGET);
+ ReferenceMap* reference_map =
+ new (gen_->zone()) ReferenceMap(gen_->zone());
+ gen_->RecordSafepoint(reference_map, Safepoint::kSimple, 0,
+ Safepoint::kNoLazyDeopt);
+ __ AssertUnreachable(kUnexpectedReturnFromWasmTrap);
+ }
+ }
+
+ bool frame_elided_;
+ Instruction* instr_;
+ CodeGenerator* gen_;
+ };
+ bool frame_elided = !frame_access_state()->has_frame();
+ auto ool = new (zone()) OutOfLineTrap(this, frame_elided, instr);
+ Label* tlabel = ool->entry();
+ Label end;
+ if (condition == kUnorderedEqual) {
+ __ j(parity_even, &end);
+ } else if (condition == kUnorderedNotEqual) {
+ __ j(parity_even, tlabel);
+ }
+ __ j(FlagsConditionToCondition(condition), tlabel);
+ __ bind(&end);
+}
+
+// Assembles boolean materializations after an instruction.
+void CodeGenerator::AssembleArchBoolean(Instruction* instr,
+ FlagsCondition condition) {
+ X87OperandConverter i(this, instr);
+ Label done;
+
+ // Materialize a full 32-bit 1 or 0 value. The result register is always the
+ // last output of the instruction.
+ Label check;
+ DCHECK_NE(0u, instr->OutputCount());
+ Register reg = i.OutputRegister(instr->OutputCount() - 1);
+ if (condition == kUnorderedEqual) {
+ __ j(parity_odd, &check, Label::kNear);
+ __ Move(reg, Immediate(0));
+ __ jmp(&done, Label::kNear);
+ } else if (condition == kUnorderedNotEqual) {
+ __ j(parity_odd, &check, Label::kNear);
+ __ mov(reg, Immediate(1));
+ __ jmp(&done, Label::kNear);
+ }
+ Condition cc = FlagsConditionToCondition(condition);
+
+ __ bind(&check);
+ if (reg.is_byte_register()) {
+ // setcc for byte registers (al, bl, cl, dl).
+ __ setcc(cc, reg);
+ __ movzx_b(reg, reg);
+ } else {
+ // Emit a branch to set a register to either 1 or 0.
+ Label set;
+ __ j(cc, &set, Label::kNear);
+ __ Move(reg, Immediate(0));
+ __ jmp(&done, Label::kNear);
+ __ bind(&set);
+ __ mov(reg, Immediate(1));
+ }
+ __ bind(&done);
+}
+
+
+void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) {
+ X87OperandConverter i(this, instr);
+ Register input = i.InputRegister(0);
+ for (size_t index = 2; index < instr->InputCount(); index += 2) {
+ __ cmp(input, Immediate(i.InputInt32(index + 0)));
+ __ j(equal, GetLabel(i.InputRpo(index + 1)));
+ }
+ AssembleArchJump(i.InputRpo(1));
+}
+
+
+void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
+ X87OperandConverter i(this, instr);
+ Register input = i.InputRegister(0);
+ size_t const case_count = instr->InputCount() - 2;
+ Label** cases = zone()->NewArray<Label*>(case_count);
+ for (size_t index = 0; index < case_count; ++index) {
+ cases[index] = GetLabel(i.InputRpo(index + 2));
+ }
+ Label* const table = AddJumpTable(cases, case_count);
+ __ cmp(input, Immediate(case_count));
+ __ j(above_equal, GetLabel(i.InputRpo(1)));
+ __ jmp(Operand::JumpTable(input, times_4, table));
+}
+
+CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall(
+ int deoptimization_id, SourcePosition pos) {
+ DeoptimizeKind deoptimization_kind = GetDeoptimizationKind(deoptimization_id);
+ DeoptimizeReason deoptimization_reason =
+ GetDeoptimizationReason(deoptimization_id);
+ Deoptimizer::BailoutType bailout_type =
+ deoptimization_kind == DeoptimizeKind::kSoft ? Deoptimizer::SOFT
+ : Deoptimizer::EAGER;
+ Address deopt_entry = Deoptimizer::GetDeoptimizationEntry(
+ isolate(), deoptimization_id, bailout_type);
+ if (deopt_entry == nullptr) return kTooManyDeoptimizationBailouts;
+ __ RecordDeoptReason(deoptimization_reason, pos, deoptimization_id);
+ __ call(deopt_entry, RelocInfo::RUNTIME_ENTRY);
+ return kSuccess;
+}
+
+
+// The calling convention for JSFunctions on X87 passes arguments on the
+// stack and the JSFunction and context in EDI and ESI, respectively, thus
+// the steps of the call look as follows:
+
+// --{ before the call instruction }--------------------------------------------
+// | caller frame |
+// ^ esp ^ ebp
+
+// --{ push arguments and setup ESI, EDI }--------------------------------------
+// | args + receiver | caller frame |
+// ^ esp ^ ebp
+// [edi = JSFunction, esi = context]
+
+// --{ call [edi + kCodeEntryOffset] }------------------------------------------
+// | RET | args + receiver | caller frame |
+// ^ esp ^ ebp
+
+// =={ prologue of called function }============================================
+// --{ push ebp }---------------------------------------------------------------
+// | FP | RET | args + receiver | caller frame |
+// ^ esp ^ ebp
+
+// --{ mov ebp, esp }-----------------------------------------------------------
+// | FP | RET | args + receiver | caller frame |
+// ^ ebp,esp
+
+// --{ push esi }---------------------------------------------------------------
+// | CTX | FP | RET | args + receiver | caller frame |
+// ^esp ^ ebp
+
+// --{ push edi }---------------------------------------------------------------
+// | FNC | CTX | FP | RET | args + receiver | caller frame |
+// ^esp ^ ebp
+
+// --{ subi esp, #N }-----------------------------------------------------------
+// | callee frame | FNC | CTX | FP | RET | args + receiver | caller frame |
+// ^esp ^ ebp
+
+// =={ body of called function }================================================
+
+// =={ epilogue of called function }============================================
+// --{ mov esp, ebp }-----------------------------------------------------------
+// | FP | RET | args + receiver | caller frame |
+// ^ esp,ebp
+
+// --{ pop ebp }-----------------------------------------------------------
+// | | RET | args + receiver | caller frame |
+// ^ esp ^ ebp
+
+// --{ ret #A+1 }-----------------------------------------------------------
+// | | caller frame |
+// ^ esp ^ ebp
+
+
+// Runtime function calls are accomplished by doing a stub call to the
+// CEntryStub (a real code object). On X87 passes arguments on the
+// stack, the number of arguments in EAX, the address of the runtime function
+// in EBX, and the context in ESI.
+
+// --{ before the call instruction }--------------------------------------------
+// | caller frame |
+// ^ esp ^ ebp
+
+// --{ push arguments and setup EAX, EBX, and ESI }-----------------------------
+// | args + receiver | caller frame |
+// ^ esp ^ ebp
+// [eax = #args, ebx = runtime function, esi = context]
+
+// --{ call #CEntryStub }-------------------------------------------------------
+// | RET | args + receiver | caller frame |
+// ^ esp ^ ebp
+
+// =={ body of runtime function }===============================================
+
+// --{ runtime returns }--------------------------------------------------------
+// | caller frame |
+// ^ esp ^ ebp
+
+// Other custom linkages (e.g. for calling directly into and out of C++) may
+// need to save callee-saved registers on the stack, which is done in the
+// function prologue of generated code.
+
+// --{ before the call instruction }--------------------------------------------
+// | caller frame |
+// ^ esp ^ ebp
+
+// --{ set up arguments in registers on stack }---------------------------------
+// | args | caller frame |
+// ^ esp ^ ebp
+// [r0 = arg0, r1 = arg1, ...]
+
+// --{ call code }--------------------------------------------------------------
+// | RET | args | caller frame |
+// ^ esp ^ ebp
+
+// =={ prologue of called function }============================================
+// --{ push ebp }---------------------------------------------------------------
+// | FP | RET | args | caller frame |
+// ^ esp ^ ebp
+
+// --{ mov ebp, esp }-----------------------------------------------------------
+// | FP | RET | args | caller frame |
+// ^ ebp,esp
+
+// --{ save registers }---------------------------------------------------------
+// | regs | FP | RET | args | caller frame |
+// ^ esp ^ ebp
+
+// --{ subi esp, #N }-----------------------------------------------------------
+// | callee frame | regs | FP | RET | args | caller frame |
+// ^esp ^ ebp
+
+// =={ body of called function }================================================
+
+// =={ epilogue of called function }============================================
+// --{ restore registers }------------------------------------------------------
+// | regs | FP | RET | args | caller frame |
+// ^ esp ^ ebp
+
+// --{ mov esp, ebp }-----------------------------------------------------------
+// | FP | RET | args | caller frame |
+// ^ esp,ebp
+
+// --{ pop ebp }----------------------------------------------------------------
+// | RET | args | caller frame |
+// ^ esp ^ ebp
+
+void CodeGenerator::FinishFrame(Frame* frame) {
+ CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
+ const RegList saves = descriptor->CalleeSavedRegisters();
+ if (saves != 0) { // Save callee-saved registers.
+ DCHECK(!info()->is_osr());
+ int pushed = 0;
+ for (int i = Register::kNumRegisters - 1; i >= 0; i--) {
+ if (!((1 << i) & saves)) continue;
+ ++pushed;
+ }
+ frame->AllocateSavedCalleeRegisterSlots(pushed);
+ }
+
+ // Initailize FPU state.
+ __ fninit();
+ __ fld1();
+}
+
+void CodeGenerator::AssembleConstructFrame() {
+ CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
+ if (frame_access_state()->has_frame()) {
+ if (descriptor->IsCFunctionCall()) {
+ __ push(ebp);
+ __ mov(ebp, esp);
+ } else if (descriptor->IsJSFunctionCall()) {
+ __ Prologue(this->info()->GeneratePreagedPrologue());
+ if (descriptor->PushArgumentCount()) {
+ __ push(kJavaScriptCallArgCountRegister);
+ }
+ } else {
+ __ StubPrologue(info()->GetOutputStackFrameType());
+ }
+ }
+
+ int shrink_slots =
+ frame()->GetTotalFrameSlotCount() - descriptor->CalculateFixedFrameSize();
+
+ if (info()->is_osr()) {
+ // TurboFan OSR-compiled functions cannot be entered directly.
+ __ Abort(kShouldNotDirectlyEnterOsrFunction);
+
+ // Unoptimized code jumps directly to this entrypoint while the unoptimized
+ // frame is still on the stack. Optimized code uses OSR values directly from
+ // the unoptimized frame. Thus, all that needs to be done is to allocate the
+ // remaining stack slots.
+ if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --");
+ osr_pc_offset_ = __ pc_offset();
+ shrink_slots -= osr_helper()->UnoptimizedFrameSlots();
+
+ // Initailize FPU state.
+ __ fninit();
+ __ fld1();
+ }
+
+ const RegList saves = descriptor->CalleeSavedRegisters();
+ if (shrink_slots > 0) {
+ if (info()->IsWasm() && shrink_slots > 128) {
+ // For WebAssembly functions with big frames we have to do the stack
+ // overflow check before we construct the frame. Otherwise we may not
+ // have enough space on the stack to call the runtime for the stack
+ // overflow.
+ Label done;
+
+ // If the frame is bigger than the stack, we throw the stack overflow
+ // exception unconditionally. Thereby we can avoid the integer overflow
+ // check in the condition code.
+ if (shrink_slots * kPointerSize < FLAG_stack_size * 1024) {
+ Register scratch = esi;
+ __ push(scratch);
+ __ mov(scratch,
+ Immediate(ExternalReference::address_of_real_stack_limit(
+ __ isolate())));
+ __ mov(scratch, Operand(scratch, 0));
+ __ add(scratch, Immediate(shrink_slots * kPointerSize));
+ __ cmp(esp, scratch);
+ __ pop(scratch);
+ __ j(above_equal, &done);
+ }
+ if (!frame_access_state()->has_frame()) {
+ __ set_has_frame(true);
+ __ EnterFrame(StackFrame::WASM_COMPILED);
+ }
+ __ Move(esi, Smi::kZero);
+ __ CallRuntimeDelayed(zone(), Runtime::kThrowWasmStackOverflow);
+ ReferenceMap* reference_map = new (zone()) ReferenceMap(zone());
+ RecordSafepoint(reference_map, Safepoint::kSimple, 0,
+ Safepoint::kNoLazyDeopt);
+ __ AssertUnreachable(kUnexpectedReturnFromWasmTrap);
+ __ bind(&done);
+ }
+ __ sub(esp, Immediate(shrink_slots * kPointerSize));
+ }
+
+ if (saves != 0) { // Save callee-saved registers.
+ DCHECK(!info()->is_osr());
+ int pushed = 0;
+ for (int i = Register::kNumRegisters - 1; i >= 0; i--) {
+ if (!((1 << i) & saves)) continue;
+ __ push(Register::from_code(i));
+ ++pushed;
+ }
+ }
+}
+
+void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
+ CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
+
+ // Clear the FPU stack only if there is no return value in the stack.
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ VerifyX87StackDepth(1);
+ }
+ bool clear_stack = true;
+ for (size_t i = 0; i < descriptor->ReturnCount(); i++) {
+ MachineRepresentation rep = descriptor->GetReturnType(i).representation();
+ LinkageLocation loc = descriptor->GetReturnLocation(i);
+ if (IsFloatingPoint(rep) && loc == LinkageLocation::ForRegister(0)) {
+ clear_stack = false;
+ break;
+ }
+ }
+ if (clear_stack) __ fstp(0);
+
+ const RegList saves = descriptor->CalleeSavedRegisters();
+ // Restore registers.
+ if (saves != 0) {
+ for (int i = 0; i < Register::kNumRegisters; i++) {
+ if (!((1 << i) & saves)) continue;
+ __ pop(Register::from_code(i));
+ }
+ }
+
+ // Might need ecx for scratch if pop_size is too big or if there is a variable
+ // pop count.
+ DCHECK_EQ(0u, descriptor->CalleeSavedRegisters() & ecx.bit());
+ size_t pop_size = descriptor->StackParameterCount() * kPointerSize;
+ X87OperandConverter g(this, nullptr);
+ if (descriptor->IsCFunctionCall()) {
+ AssembleDeconstructFrame();
+ } else if (frame_access_state()->has_frame()) {
+ // Canonicalize JSFunction return sites for now if they always have the same
+ // number of return args.
+ if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) {
+ if (return_label_.is_bound()) {
+ __ jmp(&return_label_);
+ return;
+ } else {
+ __ bind(&return_label_);
+ AssembleDeconstructFrame();
+ }
+ } else {
+ AssembleDeconstructFrame();
+ }
+ }
+ DCHECK_EQ(0u, descriptor->CalleeSavedRegisters() & edx.bit());
+ DCHECK_EQ(0u, descriptor->CalleeSavedRegisters() & ecx.bit());
+ if (pop->IsImmediate()) {
+ DCHECK_EQ(Constant::kInt32, g.ToConstant(pop).type());
+ pop_size += g.ToConstant(pop).ToInt32() * kPointerSize;
+ __ Ret(static_cast<int>(pop_size), ecx);
+ } else {
+ Register pop_reg = g.ToRegister(pop);
+ Register scratch_reg = pop_reg.is(ecx) ? edx : ecx;
+ __ pop(scratch_reg);
+ __ lea(esp, Operand(esp, pop_reg, times_4, static_cast<int>(pop_size)));
+ __ jmp(scratch_reg);
+ }
+}
+
+void CodeGenerator::FinishCode() {}
+
+void CodeGenerator::AssembleMove(InstructionOperand* source,
+ InstructionOperand* destination) {
+ X87OperandConverter g(this, nullptr);
+ // Dispatch on the source and destination operand kinds. Not all
+ // combinations are possible.
+ if (source->IsRegister()) {
+ DCHECK(destination->IsRegister() || destination->IsStackSlot());
+ Register src = g.ToRegister(source);
+ Operand dst = g.ToOperand(destination);
+ __ mov(dst, src);
+ } else if (source->IsStackSlot()) {
+ DCHECK(destination->IsRegister() || destination->IsStackSlot());
+ Operand src = g.ToOperand(source);
+ if (destination->IsRegister()) {
+ Register dst = g.ToRegister(destination);
+ __ mov(dst, src);
+ } else {
+ Operand dst = g.ToOperand(destination);
+ __ push(src);
+ __ pop(dst);
+ }
+ } else if (source->IsConstant()) {
+ Constant src_constant = g.ToConstant(source);
+ if (src_constant.type() == Constant::kHeapObject) {
+ Handle<HeapObject> src = src_constant.ToHeapObject();
+ if (destination->IsRegister()) {
+ Register dst = g.ToRegister(destination);
+ __ Move(dst, src);
+ } else {
+ DCHECK(destination->IsStackSlot());
+ Operand dst = g.ToOperand(destination);
+ __ mov(dst, src);
+ }
+ } else if (destination->IsRegister()) {
+ Register dst = g.ToRegister(destination);
+ __ Move(dst, g.ToImmediate(source));
+ } else if (destination->IsStackSlot()) {
+ Operand dst = g.ToOperand(destination);
+ __ Move(dst, g.ToImmediate(source));
+ } else if (src_constant.type() == Constant::kFloat32) {
+ // TODO(turbofan): Can we do better here?
+ uint32_t src = src_constant.ToFloat32AsInt();
+ if (destination->IsFPRegister()) {
+ __ sub(esp, Immediate(kInt32Size));
+ __ mov(MemOperand(esp, 0), Immediate(src));
+ // always only push one value into the x87 stack.
+ __ fstp(0);
+ __ fld_s(MemOperand(esp, 0));
+ __ add(esp, Immediate(kInt32Size));
+ } else {
+ DCHECK(destination->IsFPStackSlot());
+ Operand dst = g.ToOperand(destination);
+ __ Move(dst, Immediate(src));
+ }
+ } else {
+ DCHECK_EQ(Constant::kFloat64, src_constant.type());
+ uint64_t src = src_constant.ToFloat64().AsUint64();
+ uint32_t lower = static_cast<uint32_t>(src);
+ uint32_t upper = static_cast<uint32_t>(src >> 32);
+ if (destination->IsFPRegister()) {
+ __ sub(esp, Immediate(kDoubleSize));
+ __ mov(MemOperand(esp, 0), Immediate(lower));
+ __ mov(MemOperand(esp, kInt32Size), Immediate(upper));
+ // always only push one value into the x87 stack.
+ __ fstp(0);
+ __ fld_d(MemOperand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ } else {
+ DCHECK(destination->IsFPStackSlot());
+ Operand dst0 = g.ToOperand(destination);
+ Operand dst1 = g.HighOperand(destination);
+ __ Move(dst0, Immediate(lower));
+ __ Move(dst1, Immediate(upper));
+ }
+ }
+ } else if (source->IsFPRegister()) {
+ DCHECK(destination->IsFPStackSlot());
+ Operand dst = g.ToOperand(destination);
+ auto allocated = AllocatedOperand::cast(*source);
+ switch (allocated.representation()) {
+ case MachineRepresentation::kFloat32:
+ __ fst_s(dst);
+ break;
+ case MachineRepresentation::kFloat64:
+ __ fst_d(dst);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else if (source->IsFPStackSlot()) {
+ DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot());
+ Operand src = g.ToOperand(source);
+ auto allocated = AllocatedOperand::cast(*source);
+ if (destination->IsFPRegister()) {
+ // always only push one value into the x87 stack.
+ __ fstp(0);
+ switch (allocated.representation()) {
+ case MachineRepresentation::kFloat32:
+ __ fld_s(src);
+ break;
+ case MachineRepresentation::kFloat64:
+ __ fld_d(src);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else {
+ Operand dst = g.ToOperand(destination);
+ switch (allocated.representation()) {
+ case MachineRepresentation::kFloat32:
+ __ fld_s(src);
+ __ fstp_s(dst);
+ break;
+ case MachineRepresentation::kFloat64:
+ __ fld_d(src);
+ __ fstp_d(dst);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void CodeGenerator::AssembleSwap(InstructionOperand* source,
+ InstructionOperand* destination) {
+ X87OperandConverter g(this, nullptr);
+ // Dispatch on the source and destination operand kinds. Not all
+ // combinations are possible.
+ if (source->IsRegister() && destination->IsRegister()) {
+ // Register-register.
+ Register src = g.ToRegister(source);
+ Register dst = g.ToRegister(destination);
+ __ xchg(dst, src);
+ } else if (source->IsRegister() && destination->IsStackSlot()) {
+ // Register-memory.
+ __ xchg(g.ToRegister(source), g.ToOperand(destination));
+ } else if (source->IsStackSlot() && destination->IsStackSlot()) {
+ // Memory-memory.
+ Operand dst1 = g.ToOperand(destination);
+ __ push(dst1);
+ frame_access_state()->IncreaseSPDelta(1);
+ Operand src1 = g.ToOperand(source);
+ __ push(src1);
+ Operand dst2 = g.ToOperand(destination);
+ __ pop(dst2);
+ frame_access_state()->IncreaseSPDelta(-1);
+ Operand src2 = g.ToOperand(source);
+ __ pop(src2);
+ } else if (source->IsFPRegister() && destination->IsFPRegister()) {
+ UNREACHABLE();
+ } else if (source->IsFPRegister() && destination->IsFPStackSlot()) {
+ auto allocated = AllocatedOperand::cast(*source);
+ switch (allocated.representation()) {
+ case MachineRepresentation::kFloat32:
+ __ fld_s(g.ToOperand(destination));
+ __ fxch();
+ __ fstp_s(g.ToOperand(destination));
+ break;
+ case MachineRepresentation::kFloat64:
+ __ fld_d(g.ToOperand(destination));
+ __ fxch();
+ __ fstp_d(g.ToOperand(destination));
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else if (source->IsFPStackSlot() && destination->IsFPStackSlot()) {
+ auto allocated = AllocatedOperand::cast(*source);
+ switch (allocated.representation()) {
+ case MachineRepresentation::kFloat32:
+ __ fld_s(g.ToOperand(source));
+ __ fld_s(g.ToOperand(destination));
+ __ fstp_s(g.ToOperand(source));
+ __ fstp_s(g.ToOperand(destination));
+ break;
+ case MachineRepresentation::kFloat64:
+ __ fld_d(g.ToOperand(source));
+ __ fld_d(g.ToOperand(destination));
+ __ fstp_d(g.ToOperand(source));
+ __ fstp_d(g.ToOperand(destination));
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else {
+ // No other combinations are possible.
+ UNREACHABLE();
+ }
+}
+
+
+void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
+ for (size_t index = 0; index < target_count; ++index) {
+ __ dd(targets[index]);
+ }
+}
+
+
+void CodeGenerator::EnsureSpaceForLazyDeopt() {
+ if (!info()->ShouldEnsureSpaceForLazyDeopt()) {
+ return;
+ }
+
+ int space_needed = Deoptimizer::patch_size();
+ // Ensure that we have enough space after the previous lazy-bailout
+ // instruction for patching the code here.
+ int current_pc = tasm()->pc_offset();
+ if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+ int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+ __ Nop(padding_size);
+ }
+}
+
+#undef __
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-codes-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-codes-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-codes-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-codes-x87.h 2017-12-25 17:42:57.208465749 +0100
@@ -0,0 +1,144 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_COMPILER_X87_INSTRUCTION_CODES_X87_H_
+#define V8_COMPILER_X87_INSTRUCTION_CODES_X87_H_
+
+#include "src/compiler/instruction.h"
+#include "src/compiler/instruction-codes.h"
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+// X87-specific opcodes that specify which assembly sequence to emit.
+// Most opcodes specify a single instruction.
+#define TARGET_ARCH_OPCODE_LIST(V) \
+ V(X87Add) \
+ V(X87And) \
+ V(X87Cmp) \
+ V(X87Cmp16) \
+ V(X87Cmp8) \
+ V(X87Test) \
+ V(X87Test16) \
+ V(X87Test8) \
+ V(X87Or) \
+ V(X87Xor) \
+ V(X87Sub) \
+ V(X87Imul) \
+ V(X87ImulHigh) \
+ V(X87UmulHigh) \
+ V(X87Idiv) \
+ V(X87Udiv) \
+ V(X87Not) \
+ V(X87Neg) \
+ V(X87Shl) \
+ V(X87Shr) \
+ V(X87Sar) \
+ V(X87AddPair) \
+ V(X87SubPair) \
+ V(X87MulPair) \
+ V(X87ShlPair) \
+ V(X87ShrPair) \
+ V(X87SarPair) \
+ V(X87Ror) \
+ V(X87Lzcnt) \
+ V(X87Popcnt) \
+ V(X87Float32Cmp) \
+ V(X87Float32Add) \
+ V(X87Float32Sub) \
+ V(X87Float32Mul) \
+ V(X87Float32Div) \
+ V(X87Float32Abs) \
+ V(X87Float32Neg) \
+ V(X87Float32Sqrt) \
+ V(X87Float32Round) \
+ V(X87LoadFloat64Constant) \
+ V(X87Float64Add) \
+ V(X87Float64Sub) \
+ V(X87Float64Mul) \
+ V(X87Float64Div) \
+ V(X87Float64Mod) \
+ V(X87Float32Max) \
+ V(X87Float64Max) \
+ V(X87Float32Min) \
+ V(X87Float64Min) \
+ V(X87Float64Abs) \
+ V(X87Float64Neg) \
+ V(X87Int32ToFloat32) \
+ V(X87Uint32ToFloat32) \
+ V(X87Int32ToFloat64) \
+ V(X87Float32ToFloat64) \
+ V(X87Uint32ToFloat64) \
+ V(X87Float64ToInt32) \
+ V(X87Float32ToInt32) \
+ V(X87Float32ToUint32) \
+ V(X87Float64ToFloat32) \
+ V(X87Float64ToUint32) \
+ V(X87Float64ExtractHighWord32) \
+ V(X87Float64ExtractLowWord32) \
+ V(X87Float64InsertHighWord32) \
+ V(X87Float64InsertLowWord32) \
+ V(X87Float64Sqrt) \
+ V(X87Float64Round) \
+ V(X87Float64Cmp) \
+ V(X87Float64SilenceNaN) \
+ V(X87Movsxbl) \
+ V(X87Movzxbl) \
+ V(X87Movb) \
+ V(X87Movsxwl) \
+ V(X87Movzxwl) \
+ V(X87Movw) \
+ V(X87Movl) \
+ V(X87Movss) \
+ V(X87Movsd) \
+ V(X87Lea) \
+ V(X87BitcastFI) \
+ V(X87BitcastIF) \
+ V(X87Push) \
+ V(X87PushFloat64) \
+ V(X87PushFloat32) \
+ V(X87Poke) \
+ V(X87StackCheck) \
+ V(X87Xchgb) \
+ V(X87Xchgw) \
+ V(X87Xchgl)
+
+// Addressing modes represent the "shape" of inputs to an instruction.
+// Many instructions support multiple addressing modes. Addressing modes
+// are encoded into the InstructionCode of the instruction and tell the
+// code generator after register allocation which assembler method to call.
+//
+// We use the following local notation for addressing modes:
+//
+// M = memory operand
+// R = base register
+// N = index register * N for N in {1, 2, 4, 8}
+// I = immediate displacement (int32_t)
+
+#define TARGET_ADDRESSING_MODE_LIST(V) \
+ V(MR) /* [%r1 ] */ \
+ V(MRI) /* [%r1 + K] */ \
+ V(MR1) /* [%r1 + %r2*1 ] */ \
+ V(MR2) /* [%r1 + %r2*2 ] */ \
+ V(MR4) /* [%r1 + %r2*4 ] */ \
+ V(MR8) /* [%r1 + %r2*8 ] */ \
+ V(MR1I) /* [%r1 + %r2*1 + K] */ \
+ V(MR2I) /* [%r1 + %r2*2 + K] */ \
+ V(MR4I) /* [%r1 + %r2*3 + K] */ \
+ V(MR8I) /* [%r1 + %r2*4 + K] */ \
+ V(M1) /* [ %r2*1 ] */ \
+ V(M2) /* [ %r2*2 ] */ \
+ V(M4) /* [ %r2*4 ] */ \
+ V(M8) /* [ %r2*8 ] */ \
+ V(M1I) /* [ %r2*1 + K] */ \
+ V(M2I) /* [ %r2*2 + K] */ \
+ V(M4I) /* [ %r2*4 + K] */ \
+ V(M8I) /* [ %r2*8 + K] */ \
+ V(MI) /* [ K] */
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8
+
+#endif // V8_COMPILER_X87_INSTRUCTION_CODES_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-scheduler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-scheduler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-scheduler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-scheduler-x87.cc 2017-12-25 17:42:57.208465749 +0100
@@ -0,0 +1,26 @@
+// Copyright 2015 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/instruction-scheduler.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+bool InstructionScheduler::SchedulerSupported() { return false; }
+
+
+int InstructionScheduler::GetTargetInstructionFlags(
+ const Instruction* instr) const {
+ UNIMPLEMENTED();
+}
+
+
+int InstructionScheduler::GetInstructionLatency(const Instruction* instr) {
+ UNIMPLEMENTED();
+}
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-selector-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-selector-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/instruction-selector-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/instruction-selector-x87.cc 2017-12-25 17:42:57.210465720 +0100
@@ -0,0 +1,1871 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/base/adapters.h"
+#include "src/compiler/instruction-selector-impl.h"
+#include "src/compiler/node-matchers.h"
+#include "src/compiler/node-properties.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+// Adds X87-specific methods for generating operands.
+class X87OperandGenerator final : public OperandGenerator {
+ public:
+ explicit X87OperandGenerator(InstructionSelector* selector)
+ : OperandGenerator(selector) {}
+
+ InstructionOperand UseByteRegister(Node* node) {
+ // TODO(titzer): encode byte register use constraints.
+ return UseFixed(node, edx);
+ }
+
+ InstructionOperand DefineAsByteRegister(Node* node) {
+ // TODO(titzer): encode byte register def constraints.
+ return DefineAsRegister(node);
+ }
+
+ bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input,
+ int effect_level) {
+ if (input->opcode() != IrOpcode::kLoad ||
+ !selector()->CanCover(node, input)) {
+ return false;
+ }
+ if (effect_level != selector()->GetEffectLevel(input)) {
+ return false;
+ }
+ MachineRepresentation rep =
+ LoadRepresentationOf(input->op()).representation();
+ switch (opcode) {
+ case kX87Cmp:
+ case kX87Test:
+ return rep == MachineRepresentation::kWord32 ||
+ rep == MachineRepresentation::kTagged;
+ case kX87Cmp16:
+ case kX87Test16:
+ return rep == MachineRepresentation::kWord16;
+ case kX87Cmp8:
+ case kX87Test8:
+ return rep == MachineRepresentation::kWord8;
+ default:
+ break;
+ }
+ return false;
+ }
+
+ InstructionOperand CreateImmediate(int imm) {
+ return sequence()->AddImmediate(Constant(imm));
+ }
+
+ bool CanBeImmediate(Node* node) {
+ switch (node->opcode()) {
+ case IrOpcode::kInt32Constant:
+ case IrOpcode::kNumberConstant:
+ case IrOpcode::kExternalConstant:
+ case IrOpcode::kRelocatableInt32Constant:
+ case IrOpcode::kRelocatableInt64Constant:
+ return true;
+ case IrOpcode::kHeapConstant: {
+// TODO(bmeurer): We must not dereference handles concurrently. If we
+// really have to this here, then we need to find a way to put this
+// information on the HeapConstant node already.
+#if 0
+ // Constants in new space cannot be used as immediates in V8 because
+ // the GC does not scan code objects when collecting the new generation.
+ Handle<HeapObject> value = OpParameter<Handle<HeapObject>>(node);
+ Isolate* isolate = value->GetIsolate();
+ return !isolate->heap()->InNewSpace(*value);
+#endif
+ }
+ default:
+ return false;
+ }
+ }
+
+ AddressingMode GenerateMemoryOperandInputs(Node* index, int scale, Node* base,
+ Node* displacement_node,
+ DisplacementMode displacement_mode,
+ InstructionOperand inputs[],
+ size_t* input_count) {
+ AddressingMode mode = kMode_MRI;
+ int32_t displacement = (displacement_node == nullptr)
+ ? 0
+ : OpParameter<int32_t>(displacement_node);
+ if (displacement_mode == kNegativeDisplacement) {
+ displacement = -displacement;
+ }
+ if (base != nullptr) {
+ if (base->opcode() == IrOpcode::kInt32Constant) {
+ displacement += OpParameter<int32_t>(base);
+ base = nullptr;
+ }
+ }
+ if (base != nullptr) {
+ inputs[(*input_count)++] = UseRegister(base);
+ if (index != nullptr) {
+ DCHECK(scale >= 0 && scale <= 3);
+ inputs[(*input_count)++] = UseRegister(index);
+ if (displacement != 0) {
+ inputs[(*input_count)++] = TempImmediate(displacement);
+ static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
+ kMode_MR4I, kMode_MR8I};
+ mode = kMRnI_modes[scale];
+ } else {
+ static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
+ kMode_MR4, kMode_MR8};
+ mode = kMRn_modes[scale];
+ }
+ } else {
+ if (displacement == 0) {
+ mode = kMode_MR;
+ } else {
+ inputs[(*input_count)++] = TempImmediate(displacement);
+ mode = kMode_MRI;
+ }
+ }
+ } else {
+ DCHECK(scale >= 0 && scale <= 3);
+ if (index != nullptr) {
+ inputs[(*input_count)++] = UseRegister(index);
+ if (displacement != 0) {
+ inputs[(*input_count)++] = TempImmediate(displacement);
+ static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
+ kMode_M4I, kMode_M8I};
+ mode = kMnI_modes[scale];
+ } else {
+ static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2,
+ kMode_M4, kMode_M8};
+ mode = kMn_modes[scale];
+ }
+ } else {
+ inputs[(*input_count)++] = TempImmediate(displacement);
+ return kMode_MI;
+ }
+ }
+ return mode;
+ }
+
+ AddressingMode GetEffectiveAddressMemoryOperand(Node* node,
+ InstructionOperand inputs[],
+ size_t* input_count) {
+ BaseWithIndexAndDisplacement32Matcher m(node, AddressOption::kAllowAll);
+ DCHECK(m.matches());
+ if ((m.displacement() == nullptr || CanBeImmediate(m.displacement()))) {
+ return GenerateMemoryOperandInputs(
+ m.index(), m.scale(), m.base(), m.displacement(),
+ m.displacement_mode(), inputs, input_count);
+ } else {
+ inputs[(*input_count)++] = UseRegister(node->InputAt(0));
+ inputs[(*input_count)++] = UseRegister(node->InputAt(1));
+ return kMode_MR1;
+ }
+ }
+
+ bool CanBeBetterLeftOperand(Node* node) const {
+ return !selector()->IsLive(node);
+ }
+};
+
+void InstructionSelector::VisitStackSlot(Node* node) {
+ StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
+ int slot = frame_->AllocateSpillSlot(rep.size());
+ OperandGenerator g(this);
+
+ Emit(kArchStackSlot, g.DefineAsRegister(node),
+ sequence()->AddImmediate(Constant(slot)), 0, nullptr);
+}
+
+void InstructionSelector::VisitLoad(Node* node) {
+ LoadRepresentation load_rep = LoadRepresentationOf(node->op());
+
+ ArchOpcode opcode = kArchNop;
+ switch (load_rep.representation()) {
+ case MachineRepresentation::kFloat32:
+ opcode = kX87Movss;
+ break;
+ case MachineRepresentation::kFloat64:
+ opcode = kX87Movsd;
+ break;
+ case MachineRepresentation::kBit: // Fall through.
+ case MachineRepresentation::kWord8:
+ opcode = load_rep.IsSigned() ? kX87Movsxbl : kX87Movzxbl;
+ break;
+ case MachineRepresentation::kWord16:
+ opcode = load_rep.IsSigned() ? kX87Movsxwl : kX87Movzxwl;
+ break;
+ case MachineRepresentation::kTaggedSigned: // Fall through.
+ case MachineRepresentation::kTaggedPointer: // Fall through.
+ case MachineRepresentation::kTagged: // Fall through.
+ case MachineRepresentation::kWord32:
+ opcode = kX87Movl;
+ break;
+ case MachineRepresentation::kWord64: // Fall through.
+ case MachineRepresentation::kSimd128: // Fall through.
+ case MachineRepresentation::kNone:
+ UNREACHABLE();
+ return;
+ }
+
+ X87OperandGenerator g(this);
+ InstructionOperand outputs[1];
+ outputs[0] = g.DefineAsRegister(node);
+ InstructionOperand inputs[3];
+ size_t input_count = 0;
+ AddressingMode mode =
+ g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
+ InstructionCode code = opcode | AddressingModeField::encode(mode);
+ Emit(code, 1, outputs, input_count, inputs);
+}
+
+void InstructionSelector::VisitProtectedLoad(Node* node) {
+ // TODO(eholk)
+ UNIMPLEMENTED();
+}
+
+void InstructionSelector::VisitStore(Node* node) {
+ X87OperandGenerator g(this);
+ Node* base = node->InputAt(0);
+ Node* index = node->InputAt(1);
+ Node* value = node->InputAt(2);
+
+ StoreRepresentation store_rep = StoreRepresentationOf(node->op());
+ WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
+ MachineRepresentation rep = store_rep.representation();
+
+ if (write_barrier_kind != kNoWriteBarrier) {
+ DCHECK(CanBeTaggedPointer(rep));
+ AddressingMode addressing_mode;
+ InstructionOperand inputs[3];
+ size_t input_count = 0;
+ inputs[input_count++] = g.UseUniqueRegister(base);
+ if (g.CanBeImmediate(index)) {
+ inputs[input_count++] = g.UseImmediate(index);
+ addressing_mode = kMode_MRI;
+ } else {
+ inputs[input_count++] = g.UseUniqueRegister(index);
+ addressing_mode = kMode_MR1;
+ }
+ inputs[input_count++] = g.UseUniqueRegister(value);
+ RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
+ switch (write_barrier_kind) {
+ case kNoWriteBarrier:
+ UNREACHABLE();
+ break;
+ case kMapWriteBarrier:
+ record_write_mode = RecordWriteMode::kValueIsMap;
+ break;
+ case kPointerWriteBarrier:
+ record_write_mode = RecordWriteMode::kValueIsPointer;
+ break;
+ case kFullWriteBarrier:
+ record_write_mode = RecordWriteMode::kValueIsAny;
+ break;
+ }
+ InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
+ size_t const temp_count = arraysize(temps);
+ InstructionCode code = kArchStoreWithWriteBarrier;
+ code |= AddressingModeField::encode(addressing_mode);
+ code |= MiscField::encode(static_cast<int>(record_write_mode));
+ Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
+ } else {
+ ArchOpcode opcode = kArchNop;
+ switch (rep) {
+ case MachineRepresentation::kFloat32:
+ opcode = kX87Movss;
+ break;
+ case MachineRepresentation::kFloat64:
+ opcode = kX87Movsd;
+ break;
+ case MachineRepresentation::kBit: // Fall through.
+ case MachineRepresentation::kWord8:
+ opcode = kX87Movb;
+ break;
+ case MachineRepresentation::kWord16:
+ opcode = kX87Movw;
+ break;
+ case MachineRepresentation::kTaggedSigned: // Fall through.
+ case MachineRepresentation::kTaggedPointer: // Fall through.
+ case MachineRepresentation::kTagged: // Fall through.
+ case MachineRepresentation::kWord32:
+ opcode = kX87Movl;
+ break;
+ case MachineRepresentation::kWord64: // Fall through.
+ case MachineRepresentation::kSimd128: // Fall through.
+ case MachineRepresentation::kNone:
+ UNREACHABLE();
+ return;
+ }
+
+ InstructionOperand val;
+ if (g.CanBeImmediate(value)) {
+ val = g.UseImmediate(value);
+ } else if (rep == MachineRepresentation::kWord8 ||
+ rep == MachineRepresentation::kBit) {
+ val = g.UseByteRegister(value);
+ } else {
+ val = g.UseRegister(value);
+ }
+
+ InstructionOperand inputs[4];
+ size_t input_count = 0;
+ AddressingMode addressing_mode =
+ g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
+ InstructionCode code =
+ opcode | AddressingModeField::encode(addressing_mode);
+ inputs[input_count++] = val;
+ Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count,
+ inputs);
+ }
+}
+
+void InstructionSelector::VisitProtectedStore(Node* node) {
+ // TODO(eholk)
+ UNIMPLEMENTED();
+}
+
+// Architecture supports unaligned access, therefore VisitLoad is used instead
+void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
+
+// Architecture supports unaligned access, therefore VisitStore is used instead
+void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
+
+void InstructionSelector::VisitCheckedLoad(Node* node) {
+ CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
+ X87OperandGenerator g(this);
+ Node* const buffer = node->InputAt(0);
+ Node* const offset = node->InputAt(1);
+ Node* const length = node->InputAt(2);
+ ArchOpcode opcode = kArchNop;
+ switch (load_rep.representation()) {
+ case MachineRepresentation::kWord8:
+ opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
+ break;
+ case MachineRepresentation::kWord16:
+ opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
+ break;
+ case MachineRepresentation::kWord32:
+ opcode = kCheckedLoadWord32;
+ break;
+ case MachineRepresentation::kFloat32:
+ opcode = kCheckedLoadFloat32;
+ break;
+ case MachineRepresentation::kFloat64:
+ opcode = kCheckedLoadFloat64;
+ break;
+ case MachineRepresentation::kBit: // Fall through.
+ case MachineRepresentation::kTaggedSigned: // Fall through.
+ case MachineRepresentation::kTaggedPointer: // Fall through.
+ case MachineRepresentation::kTagged: // Fall through.
+ case MachineRepresentation::kWord64: // Fall through.
+ case MachineRepresentation::kSimd128: // Fall through.
+ case MachineRepresentation::kNone:
+ UNREACHABLE();
+ return;
+ }
+ InstructionOperand offset_operand = g.UseRegister(offset);
+ InstructionOperand length_operand =
+ g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
+ if (g.CanBeImmediate(buffer)) {
+ Emit(opcode | AddressingModeField::encode(kMode_MRI),
+ g.DefineAsRegister(node), offset_operand, length_operand,
+ offset_operand, g.UseImmediate(buffer));
+ } else {
+ Emit(opcode | AddressingModeField::encode(kMode_MR1),
+ g.DefineAsRegister(node), offset_operand, length_operand,
+ g.UseRegister(buffer), offset_operand);
+ }
+}
+
+
+void InstructionSelector::VisitCheckedStore(Node* node) {
+ MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
+ X87OperandGenerator g(this);
+ Node* const buffer = node->InputAt(0);
+ Node* const offset = node->InputAt(1);
+ Node* const length = node->InputAt(2);
+ Node* const value = node->InputAt(3);
+ ArchOpcode opcode = kArchNop;
+ switch (rep) {
+ case MachineRepresentation::kWord8:
+ opcode = kCheckedStoreWord8;
+ break;
+ case MachineRepresentation::kWord16:
+ opcode = kCheckedStoreWord16;
+ break;
+ case MachineRepresentation::kWord32:
+ opcode = kCheckedStoreWord32;
+ break;
+ case MachineRepresentation::kFloat32:
+ opcode = kCheckedStoreFloat32;
+ break;
+ case MachineRepresentation::kFloat64:
+ opcode = kCheckedStoreFloat64;
+ break;
+ case MachineRepresentation::kBit: // Fall through.
+ case MachineRepresentation::kTaggedSigned: // Fall through.
+ case MachineRepresentation::kTaggedPointer: // Fall through.
+ case MachineRepresentation::kTagged: // Fall through.
+ case MachineRepresentation::kWord64: // Fall through.
+ case MachineRepresentation::kSimd128: // Fall through.
+ case MachineRepresentation::kNone:
+ UNREACHABLE();
+ return;
+ }
+ InstructionOperand value_operand =
+ g.CanBeImmediate(value) ? g.UseImmediate(value)
+ : ((rep == MachineRepresentation::kWord8 ||
+ rep == MachineRepresentation::kBit)
+ ? g.UseByteRegister(value)
+ : g.UseRegister(value));
+ InstructionOperand offset_operand = g.UseRegister(offset);
+ InstructionOperand length_operand =
+ g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
+ if (g.CanBeImmediate(buffer)) {
+ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
+ offset_operand, length_operand, value_operand, offset_operand,
+ g.UseImmediate(buffer));
+ } else {
+ Emit(opcode | AddressingModeField::encode(kMode_MR1), g.NoOutput(),
+ offset_operand, length_operand, value_operand, g.UseRegister(buffer),
+ offset_operand);
+ }
+}
+
+namespace {
+
+// Shared routine for multiple binary operations.
+void VisitBinop(InstructionSelector* selector, Node* node,
+ InstructionCode opcode, FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ Int32BinopMatcher m(node);
+ Node* left = m.left().node();
+ Node* right = m.right().node();
+ InstructionOperand inputs[4];
+ size_t input_count = 0;
+ InstructionOperand outputs[2];
+ size_t output_count = 0;
+
+ // TODO(turbofan): match complex addressing modes.
+ if (left == right) {
+ // If both inputs refer to the same operand, enforce allocating a register
+ // for both of them to ensure that we don't end up generating code like
+ // this:
+ //
+ // mov eax, [ebp-0x10]
+ // add eax, [ebp-0x10]
+ // jo label
+ InstructionOperand const input = g.UseRegister(left);
+ inputs[input_count++] = input;
+ inputs[input_count++] = input;
+ } else if (g.CanBeImmediate(right)) {
+ inputs[input_count++] = g.UseRegister(left);
+ inputs[input_count++] = g.UseImmediate(right);
+ } else {
+ if (node->op()->HasProperty(Operator::kCommutative) &&
+ g.CanBeBetterLeftOperand(right)) {
+ std::swap(left, right);
+ }
+ inputs[input_count++] = g.UseRegister(left);
+ inputs[input_count++] = g.Use(right);
+ }
+
+ if (cont->IsBranch()) {
+ inputs[input_count++] = g.Label(cont->true_block());
+ inputs[input_count++] = g.Label(cont->false_block());
+ }
+
+ outputs[output_count++] = g.DefineSameAsFirst(node);
+ if (cont->IsSet()) {
+ outputs[output_count++] = g.DefineAsRegister(cont->result());
+ }
+
+ DCHECK_NE(0u, input_count);
+ DCHECK_NE(0u, output_count);
+ DCHECK_GE(arraysize(inputs), input_count);
+ DCHECK_GE(arraysize(outputs), output_count);
+
+ opcode = cont->Encode(opcode);
+ if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
+ cont->kind(), cont->reason(), cont->frame_state());
+ } else {
+ selector->Emit(opcode, output_count, outputs, input_count, inputs);
+ }
+}
+
+
+// Shared routine for multiple binary operations.
+void VisitBinop(InstructionSelector* selector, Node* node,
+ InstructionCode opcode) {
+ FlagsContinuation cont;
+ VisitBinop(selector, node, opcode, &cont);
+}
+
+} // namespace
+
+void InstructionSelector::VisitWord32And(Node* node) {
+ VisitBinop(this, node, kX87And);
+}
+
+
+void InstructionSelector::VisitWord32Or(Node* node) {
+ VisitBinop(this, node, kX87Or);
+}
+
+
+void InstructionSelector::VisitWord32Xor(Node* node) {
+ X87OperandGenerator g(this);
+ Int32BinopMatcher m(node);
+ if (m.right().Is(-1)) {
+ Emit(kX87Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
+ } else {
+ VisitBinop(this, node, kX87Xor);
+ }
+}
+
+
+// Shared routine for multiple shift operations.
+static inline void VisitShift(InstructionSelector* selector, Node* node,
+ ArchOpcode opcode) {
+ X87OperandGenerator g(selector);
+ Node* left = node->InputAt(0);
+ Node* right = node->InputAt(1);
+
+ if (g.CanBeImmediate(right)) {
+ selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+ g.UseImmediate(right));
+ } else {
+ selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
+ g.UseFixed(right, ecx));
+ }
+}
+
+
+namespace {
+
+void VisitMulHigh(InstructionSelector* selector, Node* node,
+ ArchOpcode opcode) {
+ X87OperandGenerator g(selector);
+ InstructionOperand temps[] = {g.TempRegister(eax)};
+ selector->Emit(
+ opcode, g.DefineAsFixed(node, edx), g.UseFixed(node->InputAt(0), eax),
+ g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
+}
+
+
+void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
+ X87OperandGenerator g(selector);
+ InstructionOperand temps[] = {g.TempRegister(edx)};
+ selector->Emit(opcode, g.DefineAsFixed(node, eax),
+ g.UseFixed(node->InputAt(0), eax),
+ g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
+}
+
+
+void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
+ X87OperandGenerator g(selector);
+ InstructionOperand temps[] = {g.TempRegister(eax)};
+ selector->Emit(opcode, g.DefineAsFixed(node, edx),
+ g.UseFixed(node->InputAt(0), eax),
+ g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
+}
+
+void EmitLea(InstructionSelector* selector, Node* result, Node* index,
+ int scale, Node* base, Node* displacement,
+ DisplacementMode displacement_mode) {
+ X87OperandGenerator g(selector);
+ InstructionOperand inputs[4];
+ size_t input_count = 0;
+ AddressingMode mode =
+ g.GenerateMemoryOperandInputs(index, scale, base, displacement,
+ displacement_mode, inputs, &input_count);
+
+ DCHECK_NE(0u, input_count);
+ DCHECK_GE(arraysize(inputs), input_count);
+
+ InstructionOperand outputs[1];
+ outputs[0] = g.DefineAsRegister(result);
+
+ InstructionCode opcode = AddressingModeField::encode(mode) | kX87Lea;
+
+ selector->Emit(opcode, 1, outputs, input_count, inputs);
+}
+
+} // namespace
+
+
+void InstructionSelector::VisitWord32Shl(Node* node) {
+ Int32ScaleMatcher m(node, true);
+ if (m.matches()) {
+ Node* index = node->InputAt(0);
+ Node* base = m.power_of_two_plus_one() ? index : nullptr;
+ EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement);
+ return;
+ }
+ VisitShift(this, node, kX87Shl);
+}
+
+
+void InstructionSelector::VisitWord32Shr(Node* node) {
+ VisitShift(this, node, kX87Shr);
+}
+
+
+void InstructionSelector::VisitWord32Sar(Node* node) {
+ VisitShift(this, node, kX87Sar);
+}
+
+void InstructionSelector::VisitInt32PairAdd(Node* node) {
+ X87OperandGenerator g(this);
+
+ Node* projection1 = NodeProperties::FindProjection(node, 1);
+ if (projection1) {
+ // We use UseUniqueRegister here to avoid register sharing with the temp
+ // register.
+ InstructionOperand inputs[] = {
+ g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
+ g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
+
+ InstructionOperand outputs[] = {g.DefineSameAsFirst(node),
+ g.DefineAsRegister(projection1)};
+
+ InstructionOperand temps[] = {g.TempRegister()};
+
+ Emit(kX87AddPair, 2, outputs, 4, inputs, 1, temps);
+ } else {
+ // The high word of the result is not used, so we emit the standard 32 bit
+ // instruction.
+ Emit(kX87Add, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
+ g.Use(node->InputAt(2)));
+ }
+}
+
+void InstructionSelector::VisitInt32PairSub(Node* node) {
+ X87OperandGenerator g(this);
+
+ Node* projection1 = NodeProperties::FindProjection(node, 1);
+ if (projection1) {
+ // We use UseUniqueRegister here to avoid register sharing with the temp
+ // register.
+ InstructionOperand inputs[] = {
+ g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
+ g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
+
+ InstructionOperand outputs[] = {g.DefineSameAsFirst(node),
+ g.DefineAsRegister(projection1)};
+
+ InstructionOperand temps[] = {g.TempRegister()};
+
+ Emit(kX87SubPair, 2, outputs, 4, inputs, 1, temps);
+ } else {
+ // The high word of the result is not used, so we emit the standard 32 bit
+ // instruction.
+ Emit(kX87Sub, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
+ g.Use(node->InputAt(2)));
+ }
+}
+
+void InstructionSelector::VisitInt32PairMul(Node* node) {
+ X87OperandGenerator g(this);
+
+ Node* projection1 = NodeProperties::FindProjection(node, 1);
+ if (projection1) {
+ // InputAt(3) explicitly shares ecx with OutputRegister(1) to save one
+ // register and one mov instruction.
+ InstructionOperand inputs[] = {g.UseUnique(node->InputAt(0)),
+ g.UseUnique(node->InputAt(1)),
+ g.UseUniqueRegister(node->InputAt(2)),
+ g.UseFixed(node->InputAt(3), ecx)};
+
+ InstructionOperand outputs[] = {
+ g.DefineAsFixed(node, eax),
+ g.DefineAsFixed(NodeProperties::FindProjection(node, 1), ecx)};
+
+ InstructionOperand temps[] = {g.TempRegister(edx)};
+
+ Emit(kX87MulPair, 2, outputs, 4, inputs, 1, temps);
+ } else {
+ // The high word of the result is not used, so we emit the standard 32 bit
+ // instruction.
+ Emit(kX87Imul, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
+ g.Use(node->InputAt(2)));
+ }
+}
+
+void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode,
+ Node* node) {
+ X87OperandGenerator g(selector);
+
+ Node* shift = node->InputAt(2);
+ InstructionOperand shift_operand;
+ if (g.CanBeImmediate(shift)) {
+ shift_operand = g.UseImmediate(shift);
+ } else {
+ shift_operand = g.UseFixed(shift, ecx);
+ }
+ InstructionOperand inputs[] = {g.UseFixed(node->InputAt(0), eax),
+ g.UseFixed(node->InputAt(1), edx),
+ shift_operand};
+
+ InstructionOperand outputs[2];
+ InstructionOperand temps[1];
+ int32_t output_count = 0;
+ int32_t temp_count = 0;
+ outputs[output_count++] = g.DefineAsFixed(node, eax);
+ Node* projection1 = NodeProperties::FindProjection(node, 1);
+ if (projection1) {
+ outputs[output_count++] = g.DefineAsFixed(projection1, edx);
+ } else {
+ temps[temp_count++] = g.TempRegister(edx);
+ }
+
+ selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
+}
+
+void InstructionSelector::VisitWord32PairShl(Node* node) {
+ VisitWord32PairShift(this, kX87ShlPair, node);
+}
+
+void InstructionSelector::VisitWord32PairShr(Node* node) {
+ VisitWord32PairShift(this, kX87ShrPair, node);
+}
+
+void InstructionSelector::VisitWord32PairSar(Node* node) {
+ VisitWord32PairShift(this, kX87SarPair, node);
+}
+
+void InstructionSelector::VisitWord32Ror(Node* node) {
+ VisitShift(this, node, kX87Ror);
+}
+
+
+void InstructionSelector::VisitWord32Clz(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Lzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
+
+
+void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
+
+void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); }
+
+void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); }
+
+void InstructionSelector::VisitWord32Popcnt(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Popcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitInt32Add(Node* node) {
+ X87OperandGenerator g(this);
+
+ // Try to match the Add to a lea pattern
+ BaseWithIndexAndDisplacement32Matcher m(node);
+ if (m.matches() &&
+ (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
+ InstructionOperand inputs[4];
+ size_t input_count = 0;
+ AddressingMode mode = g.GenerateMemoryOperandInputs(
+ m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(),
+ inputs, &input_count);
+
+ DCHECK_NE(0u, input_count);
+ DCHECK_GE(arraysize(inputs), input_count);
+
+ InstructionOperand outputs[1];
+ outputs[0] = g.DefineAsRegister(node);
+
+ InstructionCode opcode = AddressingModeField::encode(mode) | kX87Lea;
+ Emit(opcode, 1, outputs, input_count, inputs);
+ return;
+ }
+
+ // No lea pattern match, use add
+ VisitBinop(this, node, kX87Add);
+}
+
+
+void InstructionSelector::VisitInt32Sub(Node* node) {
+ X87OperandGenerator g(this);
+ Int32BinopMatcher m(node);
+ if (m.left().Is(0)) {
+ Emit(kX87Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
+ } else {
+ VisitBinop(this, node, kX87Sub);
+ }
+}
+
+
+void InstructionSelector::VisitInt32Mul(Node* node) {
+ Int32ScaleMatcher m(node, true);
+ if (m.matches()) {
+ Node* index = node->InputAt(0);
+ Node* base = m.power_of_two_plus_one() ? index : nullptr;
+ EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement);
+ return;
+ }
+ X87OperandGenerator g(this);
+ Node* left = node->InputAt(0);
+ Node* right = node->InputAt(1);
+ if (g.CanBeImmediate(right)) {
+ Emit(kX87Imul, g.DefineAsRegister(node), g.Use(left),
+ g.UseImmediate(right));
+ } else {
+ if (g.CanBeBetterLeftOperand(right)) {
+ std::swap(left, right);
+ }
+ Emit(kX87Imul, g.DefineSameAsFirst(node), g.UseRegister(left),
+ g.Use(right));
+ }
+}
+
+
+void InstructionSelector::VisitInt32MulHigh(Node* node) {
+ VisitMulHigh(this, node, kX87ImulHigh);
+}
+
+
+void InstructionSelector::VisitUint32MulHigh(Node* node) {
+ VisitMulHigh(this, node, kX87UmulHigh);
+}
+
+
+void InstructionSelector::VisitInt32Div(Node* node) {
+ VisitDiv(this, node, kX87Idiv);
+}
+
+
+void InstructionSelector::VisitUint32Div(Node* node) {
+ VisitDiv(this, node, kX87Udiv);
+}
+
+
+void InstructionSelector::VisitInt32Mod(Node* node) {
+ VisitMod(this, node, kX87Idiv);
+}
+
+
+void InstructionSelector::VisitUint32Mod(Node* node) {
+ VisitMod(this, node, kX87Udiv);
+}
+
+
+void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32ToFloat64, g.DefineAsFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Int32ToFloat32, g.DefineAsFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Uint32ToFloat32, g.DefineAsFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Int32ToFloat64, g.DefineAsFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Uint32ToFloat64, g.DefineAsFixed(node, stX_0),
+ g.UseRegister(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ToFloat32, g.DefineAsFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kArchTruncateDoubleToI, g.DefineAsRegister(node),
+ g.Use(node->InputAt(0)));
+}
+
+void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87BitcastFI, g.DefineAsRegister(node), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87BitcastIF, g.DefineAsFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat32Add(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Add, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Add(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Add, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat32Sub(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Sub, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat64Sub(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Sub, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat32Mul(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Mul, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Mul(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Mul, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat32Div(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Div, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Div(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Div, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Mod(Node* node) {
+ X87OperandGenerator g(this);
+ InstructionOperand temps[] = {g.TempRegister(eax)};
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Mod, g.DefineAsFixed(node, stX_0), 1, temps)->MarkAsCall();
+}
+
+void InstructionSelector::VisitFloat32Max(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Max, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat64Max(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Max, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat32Min(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float32Min, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat64Min(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(kX87Float64Min, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat32Abs(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float32Abs, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Abs(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float64Abs, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat32Sqrt(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float32Sqrt, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat64Sqrt(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float64Sqrt, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+
+void InstructionSelector::VisitFloat32RoundDown(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32Round | MiscField::encode(kRoundDown),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64RoundDown(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64Round | MiscField::encode(kRoundDown),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat32RoundUp(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32Round | MiscField::encode(kRoundUp), g.UseFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64RoundUp(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64Round | MiscField::encode(kRoundUp), g.UseFixed(node, stX_0),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32Round | MiscField::encode(kRoundToZero),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64Round | MiscField::encode(kRoundToZero),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
+ UNREACHABLE();
+}
+
+
+void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float32Round | MiscField::encode(kRoundToNearest),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64Round | MiscField::encode(kRoundToNearest),
+ g.UseFixed(node, stX_0), g.Use(node->InputAt(0)));
+}
+
+void InstructionSelector::VisitFloat32Neg(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float32Neg, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat64Neg(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float64Neg, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
+ InstructionCode opcode) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ Emit(opcode, g.DefineAsFixed(node, stX_0), 0, nullptr)->MarkAsCall();
+}
+
+void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
+ InstructionCode opcode) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(opcode, g.DefineAsFixed(node, stX_0), 0, nullptr)->MarkAsCall();
+}
+
+void InstructionSelector::EmitPrepareArguments(
+ ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
+ Node* node) {
+ X87OperandGenerator g(this);
+
+ // Prepare for C function call.
+ if (descriptor->IsCFunctionCall()) {
+ InstructionOperand temps[] = {g.TempRegister()};
+ size_t const temp_count = arraysize(temps);
+ Emit(kArchPrepareCallCFunction |
+ MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
+ 0, nullptr, 0, nullptr, temp_count, temps);
+
+ // Poke any stack arguments.
+ for (size_t n = 0; n < arguments->size(); ++n) {
+ PushParameter input = (*arguments)[n];
+ if (input.node()) {
+ int const slot = static_cast<int>(n);
+ InstructionOperand value = g.CanBeImmediate(input.node())
+ ? g.UseImmediate(input.node())
+ : g.UseRegister(input.node());
+ Emit(kX87Poke | MiscField::encode(slot), g.NoOutput(), value);
+ }
+ }
+ } else {
+ // Push any stack arguments.
+ for (PushParameter input : base::Reversed(*arguments)) {
+ // TODO(titzer): handle pushing double parameters.
+ if (input.node() == nullptr) continue;
+ InstructionOperand value =
+ g.CanBeImmediate(input.node())
+ ? g.UseImmediate(input.node())
+ : IsSupported(ATOM) ||
+ sequence()->IsFP(GetVirtualRegister(input.node()))
+ ? g.UseRegister(input.node())
+ : g.Use(input.node());
+ Emit(kX87Push, g.NoOutput(), value);
+ }
+ }
+}
+
+
+bool InstructionSelector::IsTailCallAddressImmediate() { return true; }
+
+int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 0; }
+
+namespace {
+
+void VisitCompareWithMemoryOperand(InstructionSelector* selector,
+ InstructionCode opcode, Node* left,
+ InstructionOperand right,
+ FlagsContinuation* cont) {
+ DCHECK(left->opcode() == IrOpcode::kLoad);
+ X87OperandGenerator g(selector);
+ size_t input_count = 0;
+ InstructionOperand inputs[6];
+ AddressingMode addressing_mode =
+ g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count);
+ opcode |= AddressingModeField::encode(addressing_mode);
+ opcode = cont->Encode(opcode);
+ inputs[input_count++] = right;
+
+ if (cont->IsBranch()) {
+ inputs[input_count++] = g.Label(cont->true_block());
+ inputs[input_count++] = g.Label(cont->false_block());
+ selector->Emit(opcode, 0, nullptr, input_count, inputs);
+ } else if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs,
+ cont->kind(), cont->reason(), cont->frame_state());
+ } else if (cont->IsSet()) {
+ InstructionOperand output = g.DefineAsRegister(cont->result());
+ selector->Emit(opcode, 1, &output, input_count, inputs);
+ } else {
+ DCHECK(cont->IsTrap());
+ inputs[input_count++] = g.UseImmediate(cont->trap_id());
+ selector->Emit(opcode, 0, nullptr, input_count, inputs);
+ }
+}
+
+// Shared routine for multiple compare operations.
+void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
+ InstructionOperand left, InstructionOperand right,
+ FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ opcode = cont->Encode(opcode);
+ if (cont->IsBranch()) {
+ selector->Emit(opcode, g.NoOutput(), left, right,
+ g.Label(cont->true_block()), g.Label(cont->false_block()));
+ } else if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
+ cont->reason(), cont->frame_state());
+ } else if (cont->IsSet()) {
+ selector->Emit(opcode, g.DefineAsByteRegister(cont->result()), left, right);
+ } else {
+ DCHECK(cont->IsTrap());
+ selector->Emit(opcode, g.NoOutput(), left, right,
+ g.UseImmediate(cont->trap_id()));
+ }
+}
+
+
+// Shared routine for multiple compare operations.
+void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
+ Node* left, Node* right, FlagsContinuation* cont,
+ bool commutative) {
+ X87OperandGenerator g(selector);
+ if (commutative && g.CanBeBetterLeftOperand(right)) {
+ std::swap(left, right);
+ }
+ VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
+}
+
+MachineType MachineTypeForNarrow(Node* node, Node* hint_node) {
+ if (hint_node->opcode() == IrOpcode::kLoad) {
+ MachineType hint = LoadRepresentationOf(hint_node->op());
+ if (node->opcode() == IrOpcode::kInt32Constant ||
+ node->opcode() == IrOpcode::kInt64Constant) {
+ int64_t constant = node->opcode() == IrOpcode::kInt32Constant
+ ? OpParameter<int32_t>(node)
+ : OpParameter<int64_t>(node);
+ if (hint == MachineType::Int8()) {
+ if (constant >= std::numeric_limits<int8_t>::min() &&
+ constant <= std::numeric_limits<int8_t>::max()) {
+ return hint;
+ }
+ } else if (hint == MachineType::Uint8()) {
+ if (constant >= std::numeric_limits<uint8_t>::min() &&
+ constant <= std::numeric_limits<uint8_t>::max()) {
+ return hint;
+ }
+ } else if (hint == MachineType::Int16()) {
+ if (constant >= std::numeric_limits<int16_t>::min() &&
+ constant <= std::numeric_limits<int16_t>::max()) {
+ return hint;
+ }
+ } else if (hint == MachineType::Uint16()) {
+ if (constant >= std::numeric_limits<uint16_t>::min() &&
+ constant <= std::numeric_limits<uint16_t>::max()) {
+ return hint;
+ }
+ } else if (hint == MachineType::Int32()) {
+ return hint;
+ } else if (hint == MachineType::Uint32()) {
+ if (constant >= 0) return hint;
+ }
+ }
+ }
+ return node->opcode() == IrOpcode::kLoad ? LoadRepresentationOf(node->op())
+ : MachineType::None();
+}
+
+// Tries to match the size of the given opcode to that of the operands, if
+// possible.
+InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left,
+ Node* right, FlagsContinuation* cont) {
+ // TODO(epertoso): we can probably get some size information out of phi nodes.
+ // If the load representations don't match, both operands will be
+ // zero/sign-extended to 32bit.
+ MachineType left_type = MachineTypeForNarrow(left, right);
+ MachineType right_type = MachineTypeForNarrow(right, left);
+ if (left_type == right_type) {
+ switch (left_type.representation()) {
+ case MachineRepresentation::kBit:
+ case MachineRepresentation::kWord8: {
+ if (opcode == kX87Test) return kX87Test8;
+ if (opcode == kX87Cmp) {
+ if (left_type.semantic() == MachineSemantic::kUint32) {
+ cont->OverwriteUnsignedIfSigned();
+ } else {
+ CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
+ }
+ return kX87Cmp8;
+ }
+ break;
+ }
+ case MachineRepresentation::kWord16:
+ if (opcode == kX87Test) return kX87Test16;
+ if (opcode == kX87Cmp) {
+ if (left_type.semantic() == MachineSemantic::kUint32) {
+ cont->OverwriteUnsignedIfSigned();
+ } else {
+ CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
+ }
+ return kX87Cmp16;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ return opcode;
+}
+
+// Shared routine for multiple float32 compare operations (inputs commuted).
+void VisitFloat32Compare(InstructionSelector* selector, Node* node,
+ FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ selector->Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(0)));
+ selector->Emit(kX87PushFloat32, g.NoOutput(), g.Use(node->InputAt(1)));
+ if (cont->IsBranch()) {
+ selector->Emit(cont->Encode(kX87Float32Cmp), g.NoOutput(),
+ g.Label(cont->true_block()), g.Label(cont->false_block()));
+ } else if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(cont->Encode(kX87Float32Cmp), g.NoOutput(),
+ g.Use(node->InputAt(0)), g.Use(node->InputAt(1)),
+ cont->kind(), cont->reason(), cont->frame_state());
+ } else if (cont->IsSet()) {
+ selector->Emit(cont->Encode(kX87Float32Cmp),
+ g.DefineAsByteRegister(cont->result()));
+ } else {
+ DCHECK(cont->IsTrap());
+ selector->Emit(cont->Encode(kX87Float32Cmp), g.NoOutput(),
+ g.UseImmediate(cont->trap_id()));
+ }
+}
+
+
+// Shared routine for multiple float64 compare operations (inputs commuted).
+void VisitFloat64Compare(InstructionSelector* selector, Node* node,
+ FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ selector->Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ selector->Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(1)));
+ if (cont->IsBranch()) {
+ selector->Emit(cont->Encode(kX87Float64Cmp), g.NoOutput(),
+ g.Label(cont->true_block()), g.Label(cont->false_block()));
+ } else if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(cont->Encode(kX87Float64Cmp), g.NoOutput(),
+ g.Use(node->InputAt(0)), g.Use(node->InputAt(1)),
+ cont->kind(), cont->reason(), cont->frame_state());
+ } else if (cont->IsSet()) {
+ selector->Emit(cont->Encode(kX87Float64Cmp),
+ g.DefineAsByteRegister(cont->result()));
+ } else {
+ DCHECK(cont->IsTrap());
+ selector->Emit(cont->Encode(kX87Float64Cmp), g.NoOutput(),
+ g.UseImmediate(cont->trap_id()));
+ }
+}
+
+// Shared routine for multiple word compare operations.
+void VisitWordCompare(InstructionSelector* selector, Node* node,
+ InstructionCode opcode, FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ Node* left = node->InputAt(0);
+ Node* right = node->InputAt(1);
+
+ InstructionCode narrowed_opcode =
+ TryNarrowOpcodeSize(opcode, left, right, cont);
+
+ int effect_level = selector->GetEffectLevel(node);
+ if (cont->IsBranch()) {
+ effect_level = selector->GetEffectLevel(
+ cont->true_block()->PredecessorAt(0)->control_input());
+ }
+
+ // If one of the two inputs is an immediate, make sure it's on the right, or
+ // if one of the two inputs is a memory operand, make sure it's on the left.
+ if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) ||
+ (g.CanBeMemoryOperand(narrowed_opcode, node, right, effect_level) &&
+ !g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level))) {
+ if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
+ std::swap(left, right);
+ }
+
+ // Match immediates on right side of comparison.
+ if (g.CanBeImmediate(right)) {
+ if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) {
+ return VisitCompareWithMemoryOperand(selector, narrowed_opcode, left,
+ g.UseImmediate(right), cont);
+ }
+ return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right),
+ cont);
+ }
+
+ // Match memory operands on left side of comparison.
+ if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) {
+ bool needs_byte_register =
+ narrowed_opcode == kX87Test8 || narrowed_opcode == kX87Cmp8;
+ return VisitCompareWithMemoryOperand(
+ selector, narrowed_opcode, left,
+ needs_byte_register ? g.UseByteRegister(right) : g.UseRegister(right),
+ cont);
+ }
+
+ if (g.CanBeBetterLeftOperand(right)) {
+ if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
+ std::swap(left, right);
+ }
+
+ return VisitCompare(selector, opcode, left, right, cont,
+ node->op()->HasProperty(Operator::kCommutative));
+}
+
+void VisitWordCompare(InstructionSelector* selector, Node* node,
+ FlagsContinuation* cont) {
+ X87OperandGenerator g(selector);
+ Int32BinopMatcher m(node);
+ if (m.left().IsLoad() && m.right().IsLoadStackPointer()) {
+ LoadMatcher<ExternalReferenceMatcher> mleft(m.left().node());
+ ExternalReference js_stack_limit =
+ ExternalReference::address_of_stack_limit(selector->isolate());
+ if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) {
+ // Compare(Load(js_stack_limit), LoadStackPointer)
+ if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
+ InstructionCode opcode = cont->Encode(kX87StackCheck);
+ if (cont->IsBranch()) {
+ selector->Emit(opcode, g.NoOutput(), g.Label(cont->true_block()),
+ g.Label(cont->false_block()));
+ } else if (cont->IsDeoptimize()) {
+ selector->EmitDeoptimize(opcode, 0, nullptr, 0, nullptr, cont->kind(),
+ cont->reason(), cont->frame_state());
+ } else {
+ DCHECK(cont->IsSet());
+ selector->Emit(opcode, g.DefineAsRegister(cont->result()));
+ }
+ return;
+ }
+ }
+ VisitWordCompare(selector, node, kX87Cmp, cont);
+}
+
+
+// Shared routine for word comparison with zero.
+void VisitWordCompareZero(InstructionSelector* selector, Node* user,
+ Node* value, FlagsContinuation* cont) {
+ // Try to combine with comparisons against 0 by simply inverting the branch.
+ while (value->opcode() == IrOpcode::kWord32Equal &&
+ selector->CanCover(user, value)) {
+ Int32BinopMatcher m(value);
+ if (!m.right().Is(0)) break;
+
+ user = value;
+ value = m.left().node();
+ cont->Negate();
+ }
+
+ if (selector->CanCover(user, value)) {
+ switch (value->opcode()) {
+ case IrOpcode::kWord32Equal:
+ cont->OverwriteAndNegateIfEqual(kEqual);
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kInt32LessThan:
+ cont->OverwriteAndNegateIfEqual(kSignedLessThan);
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kInt32LessThanOrEqual:
+ cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kUint32LessThan:
+ cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kUint32LessThanOrEqual:
+ cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kFloat32Equal:
+ cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
+ return VisitFloat32Compare(selector, value, cont);
+ case IrOpcode::kFloat32LessThan:
+ cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
+ return VisitFloat32Compare(selector, value, cont);
+ case IrOpcode::kFloat32LessThanOrEqual:
+ cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
+ return VisitFloat32Compare(selector, value, cont);
+ case IrOpcode::kFloat64Equal:
+ cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
+ return VisitFloat64Compare(selector, value, cont);
+ case IrOpcode::kFloat64LessThan:
+ cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
+ return VisitFloat64Compare(selector, value, cont);
+ case IrOpcode::kFloat64LessThanOrEqual:
+ cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
+ return VisitFloat64Compare(selector, value, cont);
+ case IrOpcode::kProjection:
+ // Check if this is the overflow output projection of an
+ // <Operation>WithOverflow node.
+ if (ProjectionIndexOf(value->op()) == 1u) {
+ // We cannot combine the <Operation>WithOverflow with this branch
+ // unless the 0th projection (the use of the actual value of the
+ // <Operation> is either nullptr, which means there's no use of the
+ // actual value, or was already defined, which means it is scheduled
+ // *AFTER* this branch).
+ Node* const node = value->InputAt(0);
+ Node* const result = NodeProperties::FindProjection(node, 0);
+ if (result == nullptr || selector->IsDefined(result)) {
+ switch (node->opcode()) {
+ case IrOpcode::kInt32AddWithOverflow:
+ cont->OverwriteAndNegateIfEqual(kOverflow);
+ return VisitBinop(selector, node, kX87Add, cont);
+ case IrOpcode::kInt32SubWithOverflow:
+ cont->OverwriteAndNegateIfEqual(kOverflow);
+ return VisitBinop(selector, node, kX87Sub, cont);
+ case IrOpcode::kInt32MulWithOverflow:
+ cont->OverwriteAndNegateIfEqual(kOverflow);
+ return VisitBinop(selector, node, kX87Imul, cont);
+ default:
+ break;
+ }
+ }
+ }
+ break;
+ case IrOpcode::kInt32Sub:
+ return VisitWordCompare(selector, value, cont);
+ case IrOpcode::kWord32And:
+ return VisitWordCompare(selector, value, kX87Test, cont);
+ default:
+ break;
+ }
+ }
+
+ // Continuation could not be combined with a compare, emit compare against 0.
+ X87OperandGenerator g(selector);
+ VisitCompare(selector, kX87Cmp, g.Use(value), g.TempImmediate(0), cont);
+}
+
+} // namespace
+
+
+void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
+ BasicBlock* fbranch) {
+ FlagsContinuation cont(kNotEqual, tbranch, fbranch);
+ VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
+}
+
+void InstructionSelector::VisitDeoptimizeIf(Node* node) {
+ DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
+ FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
+ kNotEqual, p.kind(), p.reason(), node->InputAt(1));
+ VisitWordCompareZero(this, node, node->InputAt(0), &cont);
+}
+
+void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
+ DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
+ FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
+ kEqual, p.kind(), p.reason(), node->InputAt(1));
+ VisitWordCompareZero(this, node, node->InputAt(0), &cont);
+}
+
+void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
+ VisitWordCompareZero(this, node, node->InputAt(0), &cont);
+}
+
+void InstructionSelector::VisitTrapUnless(Node* node,
+ Runtime::FunctionId func_id) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
+ VisitWordCompareZero(this, node, node->InputAt(0), &cont);
+}
+
+void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
+ X87OperandGenerator g(this);
+ InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
+
+ // Emit either ArchTableSwitch or ArchLookupSwitch.
+ static const size_t kMaxTableSwitchValueRange = 2 << 16;
+ size_t table_space_cost = 4 + sw.value_range;
+ size_t table_time_cost = 3;
+ size_t lookup_space_cost = 3 + 2 * sw.case_count;
+ size_t lookup_time_cost = sw.case_count;
+ if (sw.case_count > 4 &&
+ table_space_cost + 3 * table_time_cost <=
+ lookup_space_cost + 3 * lookup_time_cost &&
+ sw.min_value > std::numeric_limits<int32_t>::min() &&
+ sw.value_range <= kMaxTableSwitchValueRange) {
+ InstructionOperand index_operand = value_operand;
+ if (sw.min_value) {
+ index_operand = g.TempRegister();
+ Emit(kX87Lea | AddressingModeField::encode(kMode_MRI), index_operand,
+ value_operand, g.TempImmediate(-sw.min_value));
+ }
+ // Generate a table lookup.
+ return EmitTableSwitch(sw, index_operand);
+ }
+
+ // Generate a sequence of conditional jumps.
+ return EmitLookupSwitch(sw, value_operand);
+}
+
+
+void InstructionSelector::VisitWord32Equal(Node* const node) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
+ Int32BinopMatcher m(node);
+ if (m.right().Is(0)) {
+ return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
+ }
+ VisitWordCompare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitInt32LessThan(Node* node) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
+ VisitWordCompare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
+ VisitWordCompare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitUint32LessThan(Node* node) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
+ VisitWordCompare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
+ VisitWordCompare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
+ if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
+ return VisitBinop(this, node, kX87Add, &cont);
+ }
+ FlagsContinuation cont;
+ VisitBinop(this, node, kX87Add, &cont);
+}
+
+
+void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
+ if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
+ return VisitBinop(this, node, kX87Sub, &cont);
+ }
+ FlagsContinuation cont;
+ VisitBinop(this, node, kX87Sub, &cont);
+}
+
+void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
+ if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
+ return VisitBinop(this, node, kX87Imul, &cont);
+ }
+ FlagsContinuation cont;
+ VisitBinop(this, node, kX87Imul, &cont);
+}
+
+void InstructionSelector::VisitFloat32Equal(Node* node) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
+ VisitFloat32Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat32LessThan(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
+ VisitFloat32Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
+ VisitFloat32Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat64Equal(Node* node) {
+ FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
+ VisitFloat64Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat64LessThan(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
+ VisitFloat64Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
+ FlagsContinuation cont =
+ FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
+ VisitFloat64Compare(this, node, &cont);
+}
+
+
+void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ExtractLowWord32, g.DefineAsRegister(node),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87Float64ExtractHighWord32, g.DefineAsRegister(node),
+ g.Use(node->InputAt(0)));
+}
+
+
+void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
+ X87OperandGenerator g(this);
+ Node* left = node->InputAt(0);
+ Node* right = node->InputAt(1);
+ Emit(kX87Float64InsertLowWord32, g.UseFixed(node, stX_0), g.UseRegister(left),
+ g.UseRegister(right));
+}
+
+
+void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
+ X87OperandGenerator g(this);
+ Node* left = node->InputAt(0);
+ Node* right = node->InputAt(1);
+ Emit(kX87Float64InsertHighWord32, g.UseFixed(node, stX_0),
+ g.UseRegister(left), g.UseRegister(right));
+}
+
+void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
+ X87OperandGenerator g(this);
+ Emit(kX87PushFloat64, g.NoOutput(), g.Use(node->InputAt(0)));
+ Emit(kX87Float64SilenceNaN, g.DefineAsFixed(node, stX_0), 0, nullptr);
+}
+
+void InstructionSelector::VisitAtomicLoad(Node* node) {
+ LoadRepresentation load_rep = LoadRepresentationOf(node->op());
+ DCHECK(load_rep.representation() == MachineRepresentation::kWord8 ||
+ load_rep.representation() == MachineRepresentation::kWord16 ||
+ load_rep.representation() == MachineRepresentation::kWord32);
+ USE(load_rep);
+ VisitLoad(node);
+}
+
+void InstructionSelector::VisitAtomicStore(Node* node) {
+ X87OperandGenerator g(this);
+ Node* base = node->InputAt(0);
+ Node* index = node->InputAt(1);
+ Node* value = node->InputAt(2);
+
+ MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
+ ArchOpcode opcode = kArchNop;
+ switch (rep) {
+ case MachineRepresentation::kWord8:
+ opcode = kX87Xchgb;
+ break;
+ case MachineRepresentation::kWord16:
+ opcode = kX87Xchgw;
+ break;
+ case MachineRepresentation::kWord32:
+ opcode = kX87Xchgl;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ AddressingMode addressing_mode;
+ InstructionOperand inputs[4];
+ size_t input_count = 0;
+ inputs[input_count++] = g.UseUniqueRegister(base);
+ if (g.CanBeImmediate(index)) {
+ inputs[input_count++] = g.UseImmediate(index);
+ addressing_mode = kMode_MRI;
+ } else {
+ inputs[input_count++] = g.UseUniqueRegister(index);
+ addressing_mode = kMode_MR1;
+ }
+ inputs[input_count++] = g.UseUniqueRegister(value);
+ InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
+ Emit(code, 0, nullptr, input_count, inputs);
+}
+
+void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
+ UNREACHABLE();
+}
+
+void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
+ UNREACHABLE();
+}
+
+// static
+MachineOperatorBuilder::Flags
+InstructionSelector::SupportedMachineOperatorFlags() {
+ MachineOperatorBuilder::Flags flags =
+ MachineOperatorBuilder::kWord32ShiftIsSafe;
+ if (CpuFeatures::IsSupported(POPCNT)) {
+ flags |= MachineOperatorBuilder::kWord32Popcnt;
+ }
+
+ flags |= MachineOperatorBuilder::kFloat32RoundDown |
+ MachineOperatorBuilder::kFloat64RoundDown |
+ MachineOperatorBuilder::kFloat32RoundUp |
+ MachineOperatorBuilder::kFloat64RoundUp |
+ MachineOperatorBuilder::kFloat32RoundTruncate |
+ MachineOperatorBuilder::kFloat64RoundTruncate |
+ MachineOperatorBuilder::kFloat32RoundTiesEven |
+ MachineOperatorBuilder::kFloat64RoundTiesEven;
+ return flags;
+}
+
+// static
+MachineOperatorBuilder::AlignmentRequirements
+InstructionSelector::AlignmentRequirements() {
+ return MachineOperatorBuilder::AlignmentRequirements::
+ FullUnalignedAccessSupport();
+}
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/compiler/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/compiler/x87/OWNERS 2017-12-25 17:42:57.205465793 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/debug/x87/debug-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/debug/x87/debug-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/debug/x87/debug-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/debug/x87/debug-x87.cc 2017-12-25 17:42:57.210465720 +0100
@@ -0,0 +1,157 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/debug/debug.h"
+
+#include "src/codegen.h"
+#include "src/debug/liveedit.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+
+void EmitDebugBreakSlot(MacroAssembler* masm) {
+ Label check_codesize;
+ __ bind(&check_codesize);
+ __ Nop(Assembler::kDebugBreakSlotLength);
+ DCHECK_EQ(Assembler::kDebugBreakSlotLength,
+ masm->SizeOfCodeGeneratedSince(&check_codesize));
+}
+
+
+void DebugCodegen::GenerateSlot(MacroAssembler* masm, RelocInfo::Mode mode) {
+ // Generate enough nop's to make space for a call instruction.
+ masm->RecordDebugBreakSlot(mode);
+ EmitDebugBreakSlot(masm);
+}
+
+
+void DebugCodegen::ClearDebugBreakSlot(Isolate* isolate, Address pc) {
+ CodePatcher patcher(isolate, pc, Assembler::kDebugBreakSlotLength);
+ EmitDebugBreakSlot(patcher.masm());
+}
+
+
+void DebugCodegen::PatchDebugBreakSlot(Isolate* isolate, Address pc,
+ Handle<Code> code) {
+ DCHECK(code->is_debug_stub());
+ static const int kSize = Assembler::kDebugBreakSlotLength;
+ CodePatcher patcher(isolate, pc, kSize);
+
+ // Add a label for checking the size of the code used for returning.
+ Label check_codesize;
+ patcher.masm()->bind(&check_codesize);
+ patcher.masm()->call(code->entry(), RelocInfo::NONE32);
+ // Check that the size of the code generated is as expected.
+ DCHECK_EQ(kSize, patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize));
+}
+
+bool DebugCodegen::DebugBreakSlotIsPatched(Address pc) {
+ return !Assembler::IsNop(pc);
+}
+
+void DebugCodegen::GenerateDebugBreakStub(MacroAssembler* masm,
+ DebugBreakCallHelperMode mode) {
+ __ RecordComment("Debug break");
+
+ // Enter an internal frame.
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Load padding words on stack.
+ for (int i = 0; i < LiveEdit::kFramePaddingInitialSize; i++) {
+ __ push(Immediate(Smi::FromInt(LiveEdit::kFramePaddingValue)));
+ }
+ __ push(Immediate(Smi::FromInt(LiveEdit::kFramePaddingInitialSize)));
+
+ // Push arguments for DebugBreak call.
+ if (mode == SAVE_RESULT_REGISTER) {
+ // Break on return.
+ __ push(eax);
+ } else {
+ // Non-return breaks.
+ __ Push(masm->isolate()->factory()->the_hole_value());
+ }
+ __ Move(eax, Immediate(1));
+ __ mov(ebx,
+ Immediate(ExternalReference(
+ Runtime::FunctionForId(Runtime::kDebugBreak), masm->isolate())));
+
+ CEntryStub ceb(masm->isolate(), 1);
+ __ CallStub(&ceb);
+
+ if (FLAG_debug_code) {
+ for (int i = 0; i < kNumJSCallerSaved; ++i) {
+ Register reg = {JSCallerSavedCode(i)};
+ // Do not clobber eax if mode is SAVE_RESULT_REGISTER. It will
+ // contain return value of the function.
+ if (!(reg.is(eax) && (mode == SAVE_RESULT_REGISTER))) {
+ __ Move(reg, Immediate(kDebugZapValue));
+ }
+ }
+ }
+
+ __ pop(ebx);
+ // We divide stored value by 2 (untagging) and multiply it by word's size.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiShiftSize == 0);
+ __ lea(esp, Operand(esp, ebx, times_half_pointer_size, 0));
+
+ // Get rid of the internal frame.
+ }
+
+ // This call did not replace a call , so there will be an unwanted
+ // return address left on the stack. Here we get rid of that.
+ __ add(esp, Immediate(kPointerSize));
+
+ // Now that the break point has been handled, resume normal execution by
+ // jumping to the target address intended by the caller and that was
+ // overwritten by the address of DebugBreakXXX.
+ ExternalReference after_break_target =
+ ExternalReference::debug_after_break_target_address(masm->isolate());
+ __ jmp(Operand::StaticVariable(after_break_target));
+}
+
+
+void DebugCodegen::GenerateFrameDropperLiveEdit(MacroAssembler* masm) {
+ // We do not know our frame height, but set esp based on ebp.
+ __ lea(esp, Operand(ebp, FrameDropperFrameConstants::kFunctionOffset));
+ __ pop(edi); // Function.
+ __ add(esp, Immediate(-FrameDropperFrameConstants::kCodeOffset)); // INTERNAL
+ // frame
+ // marker
+ // and code
+ __ pop(ebp);
+
+ ParameterCount dummy(0);
+ __ CheckDebugHook(edi, no_reg, dummy, dummy);
+
+ // Load context from the function.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ // Clear new.target register as a safety measure.
+ __ mov(edx, masm->isolate()->factory()->undefined_value());
+
+ // Get function code.
+ __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset));
+ __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
+
+ // Re-run JSFunction, edi is function, esi is context.
+ __ jmp(ebx);
+}
+
+
+const bool LiveEdit::kFrameDropperSupported = true;
+
+#undef __
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/debug/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/debug/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/debug/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/debug/x87/OWNERS 2017-12-25 17:42:57.210465720 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/frames-inl.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/frames-inl.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/frames-inl.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/frames-inl.h 2017-12-25 17:42:57.210465720 +0100
@@ -26,6 +26,8 @@
#include "src/mips64/frames-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_S390
#include "src/s390/frames-s390.h" // NOLINT
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/frames-x87.h" // NOLINT
#else
#error Unsupported target architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/full-codegen.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/full-codegen.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/full-codegen.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/full-codegen.h 2017-12-25 17:42:57.211465705 +0100
@@ -45,7 +45,7 @@
static const int kMaxBackEdgeWeight = 127;
// Platform-specific code size multiplier.
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
static const int kCodeSizeMultiplier = 105;
#elif V8_TARGET_ARCH_X64
static const int kCodeSizeMultiplier = 165;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/x87/full-codegen-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/x87/full-codegen-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/x87/full-codegen-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/x87/full-codegen-x87.cc 2017-12-28 02:00:30.471956182 +0100
@@ -0,0 +1,2418 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/ast/compile-time-value.h"
+#include "src/ast/scopes.h"
+#include "src/builtins/builtins-constructor.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/compilation-info.h"
+#include "src/compiler.h"
+#include "src/debug/debug.h"
+#include "src/full-codegen/full-codegen.h"
+#include "src/ic/ic.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm())
+
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+ explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+ info_emitted_ = false;
+#endif
+ }
+
+ ~JumpPatchSite() {
+ DCHECK(patch_site_.is_bound() == info_emitted_);
+ }
+
+ void EmitJumpIfNotSmi(Register reg,
+ Label* target,
+ Label::Distance distance = Label::kFar) {
+ __ test(reg, Immediate(kSmiTagMask));
+ EmitJump(not_carry, target, distance); // Always taken before patched.
+ }
+
+ void EmitJumpIfSmi(Register reg,
+ Label* target,
+ Label::Distance distance = Label::kFar) {
+ __ test(reg, Immediate(kSmiTagMask));
+ EmitJump(carry, target, distance); // Never taken before patched.
+ }
+
+ void EmitPatchInfo() {
+ if (patch_site_.is_bound()) {
+ int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
+ DCHECK(is_uint8(delta_to_patch_site));
+ __ test(eax, Immediate(delta_to_patch_site));
+#ifdef DEBUG
+ info_emitted_ = true;
+#endif
+ } else {
+ __ nop(); // Signals no inlined code.
+ }
+ }
+
+ private:
+ // jc will be patched with jz, jnc will become jnz.
+ void EmitJump(Condition cc, Label* target, Label::Distance distance) {
+ DCHECK(!patch_site_.is_bound() && !info_emitted_);
+ DCHECK(cc == carry || cc == not_carry);
+ __ bind(&patch_site_);
+ __ j(cc, target, distance);
+ }
+
+ MacroAssembler* masm() { return masm_; }
+ MacroAssembler* masm_;
+ Label patch_site_;
+#ifdef DEBUG
+ bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function. On entry to the function the receiver
+// and arguments have been pushed on the stack left to right, with the
+// return address on top of them. The actual argument count matches the
+// formal parameter count expected by the function.
+//
+// The live registers are:
+// o edi: the JS function object being called (i.e. ourselves)
+// o edx: the new target value
+// o esi: our context
+// o ebp: our caller's frame pointer
+// o esp: stack pointer (pointing to return address)
+//
+// The function builds a JS frame. Please see JavaScriptFrameConstants in
+// frames-x87.h for its layout.
+void FullCodeGenerator::Generate() {
+ CompilationInfo* info = info_;
+ profiling_counter_ = isolate()->factory()->NewCell(
+ Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
+ SetFunctionPosition(literal());
+ Comment cmnt(masm_, "[ function compiled by full code generator");
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+ if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
+ int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize;
+ __ mov(ecx, Operand(esp, receiver_offset));
+ __ AssertNotSmi(ecx);
+ __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver);
+ }
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // MANUAL indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done below).
+ FrameScope frame_scope(masm_, StackFrame::MANUAL);
+
+ info->set_prologue_offset(masm_->pc_offset());
+ __ Prologue(info->GeneratePreagedPrologue());
+
+ // Increment invocation count for the function.
+ {
+ Comment cmnt(masm_, "[ Increment invocation count");
+ __ mov(ecx, FieldOperand(edi, JSFunction::kFeedbackVectorOffset));
+ __ mov(ecx, FieldOperand(ecx, Cell::kValueOffset));
+ __ add(
+ FieldOperand(ecx, FeedbackVector::kInvocationCountIndex * kPointerSize +
+ FeedbackVector::kHeaderSize),
+ Immediate(Smi::FromInt(1)));
+ }
+
+ { Comment cmnt(masm_, "[ Allocate locals");
+ int locals_count = info->scope()->num_stack_slots();
+ OperandStackDepthIncrement(locals_count);
+ if (locals_count == 1) {
+ __ push(Immediate(isolate()->factory()->undefined_value()));
+ } else if (locals_count > 1) {
+ if (locals_count >= 128) {
+ Label ok;
+ __ mov(ecx, esp);
+ __ sub(ecx, Immediate(locals_count * kPointerSize));
+ ExternalReference stack_limit =
+ ExternalReference::address_of_real_stack_limit(isolate());
+ __ cmp(ecx, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &ok, Label::kNear);
+ __ CallRuntime(Runtime::kThrowStackOverflow);
+ __ bind(&ok);
+ }
+ __ mov(eax, Immediate(isolate()->factory()->undefined_value()));
+ const int kMaxPushes = 32;
+ if (locals_count >= kMaxPushes) {
+ int loop_iterations = locals_count / kMaxPushes;
+ __ mov(ecx, loop_iterations);
+ Label loop_header;
+ __ bind(&loop_header);
+ // Do pushes.
+ for (int i = 0; i < kMaxPushes; i++) {
+ __ push(eax);
+ }
+ __ dec(ecx);
+ __ j(not_zero, &loop_header, Label::kNear);
+ }
+ int remaining = locals_count % kMaxPushes;
+ // Emit the remaining pushes.
+ for (int i = 0; i < remaining; i++) {
+ __ push(eax);
+ }
+ }
+ }
+
+ bool function_in_register = true;
+
+ // Possibly allocate a local context.
+ if (info->scope()->NeedsContext()) {
+ Comment cmnt(masm_, "[ Allocate context");
+ bool need_write_barrier = true;
+ int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ // Argument to NewContext is the function, which is still in edi.
+ if (info->scope()->is_script_scope()) {
+ __ push(edi);
+ __ Push(info->scope()->scope_info());
+ __ CallRuntime(Runtime::kNewScriptContext);
+ // The new target value is not used, clobbering is safe.
+ DCHECK_NULL(info->scope()->new_target_var());
+ } else {
+ if (info->scope()->new_target_var() != nullptr) {
+ __ push(edx); // Preserve new target.
+ }
+ if (slots <= ConstructorBuiltins::MaximumFunctionContextSlots()) {
+ Callable callable = CodeFactory::FastNewFunctionContext(
+ isolate(), info->scope()->scope_type());
+ __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
+ Immediate(slots));
+ __ Call(callable.code(), RelocInfo::CODE_TARGET);
+ // Result of the FastNewFunctionContext builtin is always in new space.
+ need_write_barrier = false;
+ } else {
+ __ push(edi);
+ __ Push(Smi::FromInt(info->scope()->scope_type()));
+ __ CallRuntime(Runtime::kNewFunctionContext);
+ }
+ if (info->scope()->new_target_var() != nullptr) {
+ __ pop(edx); // Restore new target.
+ }
+ }
+ function_in_register = false;
+ // Context is returned in eax. It replaces the context passed to us.
+ // It's saved in the stack and kept live in esi.
+ __ mov(esi, eax);
+ __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
+
+ // Copy parameters into context if necessary.
+ int num_parameters = info->scope()->num_parameters();
+ int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
+ for (int i = first_parameter; i < num_parameters; i++) {
+ Variable* var =
+ (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ mov(eax, Operand(ebp, parameter_offset));
+ // Store it in the context.
+ int context_offset = Context::SlotOffset(var->index());
+ __ mov(Operand(esi, context_offset), eax);
+ // Update the write barrier. This clobbers eax and ebx.
+ if (need_write_barrier) {
+ __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
+ kDontSaveFPRegs);
+ } else if (FLAG_debug_code) {
+ Label done;
+ __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
+ __ Abort(kExpectedNewSpaceObject);
+ __ bind(&done);
+ }
+ }
+ }
+ }
+
+ // We don't support new.target and rest parameters here.
+ DCHECK_NULL(info->scope()->new_target_var());
+ DCHECK_NULL(info->scope()->rest_parameter());
+ DCHECK_NULL(info->scope()->this_function_var());
+
+ Variable* arguments = info->scope()->arguments();
+ if (arguments != NULL) {
+ // Arguments object must be allocated after the context object, in
+ // case the "arguments" or ".arguments" variables are in the context.
+ Comment cmnt(masm_, "[ Allocate arguments object");
+ if (!function_in_register) {
+ __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ }
+ if (is_strict(language_mode()) || !has_simple_parameters()) {
+ FastNewStrictArgumentsStub stub(isolate());
+ __ CallStub(&stub);
+ } else if (literal()->has_duplicate_parameters()) {
+ __ Push(edi);
+ __ CallRuntime(Runtime::kNewSloppyArguments_Generic);
+ } else {
+ FastNewSloppyArgumentsStub stub(isolate());
+ __ CallStub(&stub);
+ }
+
+ SetVar(arguments, eax, ebx, edx);
+ }
+
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceEnter);
+ }
+
+ // Visit the declarations and body.
+ {
+ Comment cmnt(masm_, "[ Declarations");
+ VisitDeclarations(scope()->declarations());
+ }
+
+ // Assert that the declarations do not use ICs. Otherwise the debugger
+ // won't be able to redirect a PC at an IC to the correct IC in newly
+ // recompiled code.
+ DCHECK_EQ(0, ic_total_count_);
+
+ {
+ Comment cmnt(masm_, "[ Stack check");
+ Label ok;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &ok, Label::kNear);
+ __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
+ __ bind(&ok);
+ }
+
+ {
+ Comment cmnt(masm_, "[ Body");
+ DCHECK(loop_depth() == 0);
+ VisitStatements(literal()->body());
+ DCHECK(loop_depth() == 0);
+ }
+
+ // Always emit a 'return undefined' in case control fell off the end of
+ // the body.
+ { Comment cmnt(masm_, "[ return <undefined>;");
+ __ mov(eax, isolate()->factory()->undefined_value());
+ EmitReturnSequence();
+ }
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+ __ Move(eax, Immediate(Smi::kZero));
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
+ __ mov(ebx, Immediate(profiling_counter_));
+ __ sub(FieldOperand(ebx, Cell::kValueOffset),
+ Immediate(Smi::FromInt(delta)));
+}
+
+
+void FullCodeGenerator::EmitProfilingCounterReset() {
+ int reset_value = FLAG_interrupt_budget;
+ __ mov(ebx, Immediate(profiling_counter_));
+ __ mov(FieldOperand(ebx, Cell::kValueOffset),
+ Immediate(Smi::FromInt(reset_value)));
+}
+
+
+void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
+ Label* back_edge_target) {
+ Comment cmnt(masm_, "[ Back edge bookkeeping");
+ Label ok;
+
+ DCHECK(back_edge_target->is_bound());
+ int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
+ int weight = Min(kMaxBackEdgeWeight,
+ Max(1, distance / kCodeSizeMultiplier));
+ EmitProfilingCounterDecrement(weight);
+ __ j(positive, &ok, Label::kNear);
+ __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+
+ // Record a mapping of this PC offset to the OSR id. This is used to find
+ // the AST id from the unoptimized code in order to use it as a key into
+ // the deoptimization input data found in the optimized code.
+ RecordBackEdge(stmt->OsrEntryId());
+
+ EmitProfilingCounterReset();
+
+ __ bind(&ok);
+}
+
+void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence(
+ bool is_tail_call) {
+ // Pretend that the exit is a backwards jump to the entry.
+ int weight = 1;
+ if (info_->ShouldSelfOptimize()) {
+ weight = FLAG_interrupt_budget / FLAG_self_opt_count;
+ } else {
+ int distance = masm_->pc_offset();
+ weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
+ }
+ EmitProfilingCounterDecrement(weight);
+ Label ok;
+ __ j(positive, &ok, Label::kNear);
+ // Don't need to save result register if we are going to do a tail call.
+ if (!is_tail_call) {
+ __ push(eax);
+ }
+ __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
+ if (!is_tail_call) {
+ __ pop(eax);
+ }
+ EmitProfilingCounterReset();
+ __ bind(&ok);
+}
+
+void FullCodeGenerator::EmitReturnSequence() {
+ Comment cmnt(masm_, "[ Return sequence");
+ if (return_label_.is_bound()) {
+ __ jmp(&return_label_);
+ } else {
+ // Common return label
+ __ bind(&return_label_);
+ if (FLAG_trace) {
+ __ push(eax);
+ __ CallRuntime(Runtime::kTraceExit);
+ }
+ EmitProfilingCounterHandlingForReturnSequence(false);
+
+ SetReturnPosition(literal());
+ __ leave();
+
+ int arg_count = info_->scope()->num_parameters() + 1;
+ int arguments_bytes = arg_count * kPointerSize;
+ __ Ret(arguments_bytes, ecx);
+ }
+}
+
+void FullCodeGenerator::RestoreContext() {
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+}
+
+void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ MemOperand operand = codegen()->VarOperand(var, result_register());
+ // Memory operands can be pushed directly.
+ codegen()->PushOperand(operand);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
+ UNREACHABLE(); // Not used on X87.
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Heap::RootListIndex index) const {
+ UNREACHABLE(); // Not used on X87.
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Heap::RootListIndex index) const {
+ UNREACHABLE(); // Not used on X87.
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+ UNREACHABLE(); // Not used on X87.
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Handle<Object> lit) const {
+ if (lit->IsSmi()) {
+ __ SafeMove(result_register(), Immediate(Smi::cast(*lit)));
+ } else {
+ __ Move(result_register(), Immediate(Handle<HeapObject>::cast(lit)));
+ }
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+ codegen()->OperandStackDepthIncrement(1);
+ if (lit->IsSmi()) {
+ __ SafePush(Immediate(Smi::cast(*lit)));
+ } else {
+ __ push(Immediate(Handle<HeapObject>::cast(lit)));
+ }
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+ DCHECK(lit->IsNullOrUndefined(isolate()) || !lit->IsUndetectable());
+ if (lit->IsNullOrUndefined(isolate()) || lit->IsFalse(isolate())) {
+ if (false_label_ != fall_through_) __ jmp(false_label_);
+ } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) {
+ if (true_label_ != fall_through_) __ jmp(true_label_);
+ } else if (lit->IsString()) {
+ if (String::cast(*lit)->length() == 0) {
+ if (false_label_ != fall_through_) __ jmp(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ jmp(true_label_);
+ }
+ } else if (lit->IsSmi()) {
+ if (Smi::ToInt(*lit) == 0) {
+ if (false_label_ != fall_through_) __ jmp(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ jmp(true_label_);
+ }
+ } else {
+ // For simplicity we always test the accumulator register.
+ __ mov(result_register(), Handle<HeapObject>::cast(lit));
+ codegen()->DoTest(this);
+ }
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+ Register reg) const {
+ DCHECK(count > 0);
+ if (count > 1) codegen()->DropOperands(count - 1);
+ __ mov(Operand(esp, 0), reg);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ DCHECK(materialize_true == materialize_false);
+ __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ mov(result_register(), isolate()->factory()->true_value());
+ __ jmp(&done, Label::kNear);
+ __ bind(materialize_false);
+ __ mov(result_register(), isolate()->factory()->false_value());
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ codegen()->OperandStackDepthIncrement(1);
+ Label done;
+ __ bind(materialize_true);
+ __ push(Immediate(isolate()->factory()->true_value()));
+ __ jmp(&done, Label::kNear);
+ __ bind(materialize_false);
+ __ push(Immediate(isolate()->factory()->false_value()));
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ DCHECK(materialize_true == true_label_);
+ DCHECK(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+ Handle<HeapObject> value = flag ? isolate()->factory()->true_value()
+ : isolate()->factory()->false_value();
+ __ mov(result_register(), value);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+ codegen()->OperandStackDepthIncrement(1);
+ Handle<HeapObject> value = flag ? isolate()->factory()->true_value()
+ : isolate()->factory()->false_value();
+ __ push(Immediate(value));
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+ if (flag) {
+ if (true_label_ != fall_through_) __ jmp(true_label_);
+ } else {
+ if (false_label_ != fall_through_) __ jmp(false_label_);
+ }
+}
+
+
+void FullCodeGenerator::DoTest(Expression* condition,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ Callable callable = Builtins::CallableFor(isolate(), Builtins::kToBoolean);
+ __ Call(callable.code(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
+ Split(equal, if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cc,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (if_false == fall_through) {
+ __ j(cc, if_true);
+ } else if (if_true == fall_through) {
+ __ j(NegateCondition(cc), if_false);
+ } else {
+ __ j(cc, if_true);
+ __ jmp(if_false);
+ }
+}
+
+
+MemOperand FullCodeGenerator::StackOperand(Variable* var) {
+ DCHECK(var->IsStackAllocated());
+ // Offset is negative because higher indexes are at lower addresses.
+ int offset = -var->index() * kPointerSize;
+ // Adjust by a (parameter or local) base offset.
+ if (var->IsParameter()) {
+ offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
+ } else {
+ offset += JavaScriptFrameConstants::kLocal0Offset;
+ }
+ return Operand(ebp, offset);
+}
+
+
+MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
+ DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+ if (var->IsContextSlot()) {
+ int context_chain_length = scope()->ContextChainLength(var->scope());
+ __ LoadContext(scratch, context_chain_length);
+ return ContextOperand(scratch, var->index());
+ } else {
+ return StackOperand(var);
+ }
+}
+
+
+void FullCodeGenerator::GetVar(Register dest, Variable* var) {
+ DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+ MemOperand location = VarOperand(var, dest);
+ __ mov(dest, location);
+}
+
+
+void FullCodeGenerator::SetVar(Variable* var,
+ Register src,
+ Register scratch0,
+ Register scratch1) {
+ DCHECK(var->IsContextSlot() || var->IsStackAllocated());
+ DCHECK(!scratch0.is(src));
+ DCHECK(!scratch0.is(scratch1));
+ DCHECK(!scratch1.is(src));
+ MemOperand location = VarOperand(var, scratch0);
+ __ mov(location, src);
+
+ // Emit the write barrier code if the location is in the heap.
+ if (var->IsContextSlot()) {
+ int offset = Context::SlotOffset(var->index());
+ DCHECK(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi));
+ __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
+ }
+}
+
+
+void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
+ // The variable in the declaration always resides in the current context.
+ DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
+ if (FLAG_debug_code) {
+ // Check that we're not inside a with or catch context.
+ __ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset));
+ __ cmp(ebx, isolate()->factory()->with_context_map());
+ __ Check(not_equal, kDeclarationInWithContext);
+ __ cmp(ebx, isolate()->factory()->catch_context_map());
+ __ Check(not_equal, kDeclarationInCatchContext);
+ }
+}
+
+
+void FullCodeGenerator::VisitVariableDeclaration(
+ VariableDeclaration* declaration) {
+ VariableProxy* proxy = declaration->proxy();
+ Variable* variable = proxy->var();
+ switch (variable->location()) {
+ case VariableLocation::UNALLOCATED: {
+ DCHECK(!variable->binding_needs_init());
+ globals_->Add(variable->name(), zone());
+ FeedbackSlot slot = proxy->VariableFeedbackSlot();
+ DCHECK(!slot.IsInvalid());
+ globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
+ globals_->Add(isolate()->factory()->undefined_value(), zone());
+ globals_->Add(isolate()->factory()->undefined_value(), zone());
+ break;
+ }
+ case VariableLocation::PARAMETER:
+ case VariableLocation::LOCAL:
+ if (variable->binding_needs_init()) {
+ Comment cmnt(masm_, "[ VariableDeclaration");
+ __ mov(StackOperand(variable),
+ Immediate(isolate()->factory()->the_hole_value()));
+ }
+ break;
+
+ case VariableLocation::CONTEXT:
+ if (variable->binding_needs_init()) {
+ Comment cmnt(masm_, "[ VariableDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+ __ mov(ContextOperand(esi, variable->index()),
+ Immediate(isolate()->factory()->the_hole_value()));
+ // No write barrier since the hole value is in old space.
+ }
+ break;
+
+ case VariableLocation::LOOKUP:
+ case VariableLocation::MODULE:
+ UNREACHABLE();
+ }
+}
+
+void FullCodeGenerator::VisitFunctionDeclaration(
+ FunctionDeclaration* declaration) {
+ VariableProxy* proxy = declaration->proxy();
+ Variable* variable = proxy->var();
+ switch (variable->location()) {
+ case VariableLocation::UNALLOCATED: {
+ globals_->Add(variable->name(), zone());
+ FeedbackSlot slot = proxy->VariableFeedbackSlot();
+ DCHECK(!slot.IsInvalid());
+ globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
+
+ // We need the slot where the literals array lives, too.
+ slot = declaration->fun()->LiteralFeedbackSlot();
+ DCHECK(!slot.IsInvalid());
+ globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
+
+ Handle<SharedFunctionInfo> function =
+ Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
+ // Check for stack-overflow exception.
+ if (function.is_null()) return SetStackOverflow();
+ globals_->Add(function, zone());
+ break;
+ }
+
+ case VariableLocation::PARAMETER:
+ case VariableLocation::LOCAL: {
+ Comment cmnt(masm_, "[ FunctionDeclaration");
+ VisitForAccumulatorValue(declaration->fun());
+ __ mov(StackOperand(variable), result_register());
+ break;
+ }
+
+ case VariableLocation::CONTEXT: {
+ Comment cmnt(masm_, "[ FunctionDeclaration");
+ EmitDebugCheckDeclarationContext(variable);
+ VisitForAccumulatorValue(declaration->fun());
+ __ mov(ContextOperand(esi, variable->index()), result_register());
+ // We know that we have written a function, which is not a smi.
+ __ RecordWriteContextSlot(esi, Context::SlotOffset(variable->index()),
+ result_register(), ecx, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ break;
+ }
+
+ case VariableLocation::LOOKUP:
+ case VariableLocation::MODULE:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ // Call the runtime to declare the globals.
+ __ Push(pairs);
+ __ Push(Smi::FromInt(DeclareGlobalsFlags()));
+ __ EmitLoadFeedbackVector(eax);
+ __ Push(eax);
+ __ CallRuntime(Runtime::kDeclareGlobals);
+ // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+ Comment cmnt(masm_, "[ SwitchStatement");
+ Breakable nested_statement(this, stmt);
+ SetStatementPosition(stmt);
+
+ // Keep the switch value on the stack until a case matches.
+ VisitForStackValue(stmt->tag());
+
+ ZoneList<CaseClause*>* clauses = stmt->cases();
+ CaseClause* default_clause = NULL; // Can occur anywhere in the list.
+
+ Label next_test; // Recycled for each test.
+ // Compile all the tests with branches to their bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ CaseClause* clause = clauses->at(i);
+ clause->body_target()->Unuse();
+
+ // The default is not a test, but remember it as final fall through.
+ if (clause->is_default()) {
+ default_clause = clause;
+ continue;
+ }
+
+ Comment cmnt(masm_, "[ Case comparison");
+ __ bind(&next_test);
+ next_test.Unuse();
+
+ // Compile the label expression.
+ VisitForAccumulatorValue(clause->label());
+
+ // Perform the comparison as if via '==='.
+ __ mov(edx, Operand(esp, 0)); // Switch value.
+ bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ mov(ecx, edx);
+ __ or_(ecx, eax);
+ patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
+
+ __ cmp(edx, eax);
+ __ j(not_equal, &next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ jmp(clause->body_target());
+ __ bind(&slow_case);
+ }
+
+ SetExpressionPosition(clause);
+ Handle<Code> ic =
+ CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
+ CallIC(ic);
+ patch_site.EmitPatchInfo();
+
+ Label skip;
+ __ jmp(&skip, Label::kNear);
+ __ cmp(eax, isolate()->factory()->true_value());
+ __ j(not_equal, &next_test);
+ __ Drop(1);
+ __ jmp(clause->body_target());
+ __ bind(&skip);
+
+ __ test(eax, eax);
+ __ j(not_equal, &next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ jmp(clause->body_target());
+ }
+
+ // Discard the test value and jump to the default if present, otherwise to
+ // the end of the statement.
+ __ bind(&next_test);
+ DropOperands(1); // Switch value is no longer needed.
+ if (default_clause == NULL) {
+ __ jmp(nested_statement.break_label());
+ } else {
+ __ jmp(default_clause->body_target());
+ }
+
+ // Compile all the case bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ Comment cmnt(masm_, "[ Case body");
+ CaseClause* clause = clauses->at(i);
+ __ bind(clause->body_target());
+ VisitStatements(clause->statements());
+ }
+
+ __ bind(nested_statement.break_label());
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+ Comment cmnt(masm_, "[ ForInStatement");
+ SetStatementPosition(stmt, SKIP_BREAK);
+
+ FeedbackSlot slot = stmt->ForInFeedbackSlot();
+
+ // Get the object to enumerate over.
+ SetExpressionAsStatementPosition(stmt->enumerable());
+ VisitForAccumulatorValue(stmt->enumerable());
+ OperandStackDepthIncrement(5);
+
+ Label loop, exit;
+ Iteration loop_statement(this, stmt);
+ increment_loop_depth();
+
+ // If the object is null or undefined, skip over the loop, otherwise convert
+ // it to a JS receiver. See ECMA-262 version 5, section 12.6.4.
+ Label convert, done_convert;
+ __ JumpIfSmi(eax, &convert, Label::kNear);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(above_equal, &done_convert, Label::kNear);
+ __ cmp(eax, isolate()->factory()->undefined_value());
+ __ j(equal, &exit);
+ __ cmp(eax, isolate()->factory()->null_value());
+ __ j(equal, &exit);
+ __ bind(&convert);
+ __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ __ bind(&done_convert);
+ __ push(eax);
+
+ // Check cache validity in generated code. If we cannot guarantee cache
+ // validity, call the runtime system to check cache validity or get the
+ // property names in a fixed array. Note: Proxies never have an enum cache,
+ // so will always take the slow path.
+ Label call_runtime, use_cache, fixed_array;
+ __ CheckEnumCache(&call_runtime);
+
+ __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
+ __ jmp(&use_cache, Label::kNear);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(eax);
+ __ CallRuntime(Runtime::kForInEnumerate);
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+ isolate()->factory()->meta_map());
+ __ j(not_equal, &fixed_array);
+
+
+ // We got a map in register eax. Get the enumeration cache from it.
+ Label no_descriptors;
+ __ bind(&use_cache);
+
+ __ EnumLength(edx, eax);
+ __ cmp(edx, Immediate(Smi::kZero));
+ __ j(equal, &no_descriptors);
+
+ __ LoadInstanceDescriptors(eax, ecx);
+ __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeOffset));
+ __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+ // Set up the four remaining stack slots.
+ __ push(eax); // Map.
+ __ push(ecx); // Enumeration cache.
+ __ push(edx); // Number of valid entries for the map in the enum cache.
+ __ push(Immediate(Smi::kZero)); // Initial index.
+ __ jmp(&loop);
+
+ __ bind(&no_descriptors);
+ __ add(esp, Immediate(kPointerSize));
+ __ jmp(&exit);
+
+ // We got a fixed array in register eax. Iterate through that.
+ __ bind(&fixed_array);
+
+ __ push(Immediate(Smi::FromInt(1))); // Smi(1) indicates slow check
+ __ push(eax); // Array
+ __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
+ __ push(eax); // Fixed array length (as smi).
+ __ push(Immediate(Smi::kZero)); // Initial index.
+
+ // Generate code for doing the condition check.
+ __ bind(&loop);
+ SetExpressionAsStatementPosition(stmt->each());
+
+ __ mov(eax, Operand(esp, 0 * kPointerSize)); // Get the current index.
+ __ cmp(eax, Operand(esp, 1 * kPointerSize)); // Compare to the array length.
+ __ j(above_equal, loop_statement.break_label());
+
+ // Get the current entry of the array into register eax.
+ __ mov(ebx, Operand(esp, 2 * kPointerSize));
+ __ mov(eax, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize));
+
+ // Get the expected map from the stack or a smi in the
+ // permanent slow case into register edx.
+ __ mov(edx, Operand(esp, 3 * kPointerSize));
+
+ // Check if the expected map still matches that of the enumerable.
+ // If not, we may have to filter the key.
+ Label update_each;
+ __ mov(ebx, Operand(esp, 4 * kPointerSize));
+ __ cmp(edx, FieldOperand(ebx, HeapObject::kMapOffset));
+ __ j(equal, &update_each, Label::kNear);
+
+ // We need to filter the key, record slow-path here.
+ int const vector_index = SmiFromSlot(slot)->value();
+ __ EmitLoadFeedbackVector(edx);
+ __ mov(FieldOperand(edx, FixedArray::OffsetOfElementAt(vector_index)),
+ Immediate(FeedbackVector::MegamorphicSentinel(isolate())));
+
+ // eax contains the key. The receiver in ebx is the second argument to the
+ // ForInFilter. ForInFilter returns undefined if the receiver doesn't
+ // have the key or returns the name-converted key.
+ __ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ __ JumpIfRoot(result_register(), Heap::kUndefinedValueRootIndex,
+ loop_statement.continue_label());
+
+ // Update the 'each' property or variable from the possibly filtered
+ // entry in register eax.
+ __ bind(&update_each);
+ // Perform the assignment as if via '='.
+ { EffectContext context(this);
+ EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
+ }
+
+ // Generate code for the body of the loop.
+ Visit(stmt->body());
+
+ // Generate code for going to the next element by incrementing the
+ // index (smi) stored on top of the stack.
+ __ bind(loop_statement.continue_label());
+ __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1)));
+
+ EmitBackEdgeBookkeeping(stmt, &loop);
+ __ jmp(&loop);
+
+ // Remove the pointers stored on the stack.
+ __ bind(loop_statement.break_label());
+ DropOperands(5);
+
+ // Exit and decrement the loop depth.
+ __ bind(&exit);
+ decrement_loop_depth();
+}
+
+void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
+ FeedbackSlot slot) {
+ DCHECK(NeedsHomeObject(initializer));
+ __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
+ __ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize));
+ CallStoreIC(slot, isolate()->factory()->home_object_symbol());
+}
+
+void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
+ int offset,
+ FeedbackSlot slot) {
+ DCHECK(NeedsHomeObject(initializer));
+ __ mov(StoreDescriptor::ReceiverRegister(), eax);
+ __ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize));
+ CallStoreIC(slot, isolate()->factory()->home_object_symbol());
+}
+
+void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
+ TypeofMode typeof_mode) {
+ SetExpressionPosition(proxy);
+ Variable* var = proxy->var();
+
+ // Two cases: global variables and all other types of variables.
+ switch (var->location()) {
+ case VariableLocation::UNALLOCATED: {
+ Comment cmnt(masm_, "[ Global variable");
+ EmitGlobalVariableLoad(proxy, typeof_mode);
+ context()->Plug(eax);
+ break;
+ }
+
+ case VariableLocation::PARAMETER:
+ case VariableLocation::LOCAL:
+ case VariableLocation::CONTEXT: {
+ DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
+ Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
+ : "[ Stack variable");
+
+ if (proxy->hole_check_mode() == HoleCheckMode::kRequired) {
+ // Throw a reference error when using an uninitialized let/const
+ // binding in harmony mode.
+ Label done;
+ GetVar(eax, var);
+ __ cmp(eax, isolate()->factory()->the_hole_value());
+ __ j(not_equal, &done, Label::kNear);
+ __ push(Immediate(var->name()));
+ __ CallRuntime(Runtime::kThrowReferenceError);
+ __ bind(&done);
+ context()->Plug(eax);
+ break;
+ }
+ context()->Plug(var);
+ break;
+ }
+
+ case VariableLocation::LOOKUP:
+ case VariableLocation::MODULE:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
+ Expression* expression = (property == NULL) ? NULL : property->value();
+ if (expression == NULL) {
+ PushOperand(isolate()->factory()->null_value());
+ } else {
+ VisitForStackValue(expression);
+ if (NeedsHomeObject(expression)) {
+ DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
+ property->kind() == ObjectLiteral::Property::SETTER);
+ int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
+ EmitSetHomeObject(expression, offset, property->GetSlot());
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+ Comment cmnt(masm_, "[ ObjectLiteral");
+
+ Handle<BoilerplateDescription> constant_properties =
+ expr->GetOrBuildConstantProperties(isolate());
+ int flags = expr->ComputeFlags();
+ // If any of the keys would store to the elements array, then we shouldn't
+ // allow it.
+ if (MustCreateObjectLiteralWithRuntime(expr)) {
+ __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ push(Immediate(Smi::FromInt(expr->literal_index())));
+ __ push(Immediate(constant_properties));
+ __ push(Immediate(Smi::FromInt(flags)));
+ __ CallRuntime(Runtime::kCreateObjectLiteral);
+ } else {
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
+ __ mov(ecx, Immediate(constant_properties));
+ __ mov(edx, Immediate(Smi::FromInt(flags)));
+ Callable callable =
+ Builtins::CallableFor(isolate(), Builtins::kFastCloneShallowObject);
+ __ Call(callable.code(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ }
+
+ // If result_saved is true the result is on top of the stack. If
+ // result_saved is false the result is in eax.
+ bool result_saved = false;
+
+ AccessorTable accessor_table(zone());
+ for (int i = 0; i < expr->properties()->length(); i++) {
+ ObjectLiteral::Property* property = expr->properties()->at(i);
+ DCHECK(!property->is_computed_name());
+ if (property->IsCompileTimeValue()) continue;
+
+ Literal* key = property->key()->AsLiteral();
+ Expression* value = property->value();
+ if (!result_saved) {
+ PushOperand(eax); // Save result on the stack
+ result_saved = true;
+ }
+ switch (property->kind()) {
+ case ObjectLiteral::Property::SPREAD:
+ case ObjectLiteral::Property::CONSTANT:
+ UNREACHABLE();
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
+ // Fall through.
+ case ObjectLiteral::Property::COMPUTED:
+ // It is safe to use [[Put]] here because the boilerplate already
+ // contains computed properties with an uninitialized value.
+ if (key->IsStringLiteral()) {
+ DCHECK(key->IsPropertyName());
+ if (property->emit_store()) {
+ VisitForAccumulatorValue(value);
+ DCHECK(StoreDescriptor::ValueRegister().is(eax));
+ __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
+ CallStoreIC(property->GetSlot(0), key->value(), kStoreOwn);
+ if (NeedsHomeObject(value)) {
+ EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
+ }
+ } else {
+ VisitForEffect(value);
+ }
+ break;
+ }
+ PushOperand(Operand(esp, 0)); // Duplicate receiver.
+ VisitForStackValue(key);
+ VisitForStackValue(value);
+ if (property->emit_store()) {
+ if (NeedsHomeObject(value)) {
+ EmitSetHomeObject(value, 2, property->GetSlot());
+ }
+ PushOperand(Smi::FromInt(SLOPPY)); // Language mode
+ CallRuntimeWithOperands(Runtime::kSetProperty);
+ } else {
+ DropOperands(3);
+ }
+ break;
+ case ObjectLiteral::Property::PROTOTYPE:
+ PushOperand(Operand(esp, 0)); // Duplicate receiver.
+ VisitForStackValue(value);
+ DCHECK(property->emit_store());
+ CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
+ break;
+ case ObjectLiteral::Property::GETTER:
+ if (property->emit_store()) {
+ AccessorTable::Iterator it = accessor_table.lookup(key);
+ it->second->getter = property;
+ }
+ break;
+ case ObjectLiteral::Property::SETTER:
+ if (property->emit_store()) {
+ AccessorTable::Iterator it = accessor_table.lookup(key);
+ it->second->setter = property;
+ }
+ break;
+ }
+ }
+
+ // Emit code to define accessors, using only a single call to the runtime for
+ // each pair of corresponding getters and setters.
+ for (AccessorTable::Iterator it = accessor_table.begin();
+ it != accessor_table.end();
+ ++it) {
+ PushOperand(Operand(esp, 0)); // Duplicate receiver.
+ VisitForStackValue(it->first);
+
+ EmitAccessor(it->second->getter);
+ EmitAccessor(it->second->setter);
+
+ PushOperand(Smi::FromInt(NONE));
+ CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(eax);
+ }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+ Comment cmnt(masm_, "[ ArrayLiteral");
+
+ Handle<ConstantElementsPair> constant_elements =
+ expr->GetOrBuildConstantElements(isolate());
+
+ if (MustCreateArrayLiteralWithRuntime(expr)) {
+ __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ push(Immediate(Smi::FromInt(expr->literal_index())));
+ __ push(Immediate(constant_elements));
+ __ push(Immediate(Smi::FromInt(expr->ComputeFlags())));
+ __ CallRuntime(Runtime::kCreateArrayLiteral);
+ } else {
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
+ __ mov(ecx, Immediate(constant_elements));
+ Callable callable =
+ CodeFactory::FastCloneShallowArray(isolate(), TRACK_ALLOCATION_SITE);
+ __ Call(callable.code(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ }
+
+ bool result_saved = false; // Is the result saved to the stack?
+ ZoneList<Expression*>* subexprs = expr->values();
+ int length = subexprs->length();
+
+ // Emit code to evaluate all the non-constant subexpressions and to store
+ // them into the newly cloned array.
+ for (int array_index = 0; array_index < length; array_index++) {
+ Expression* subexpr = subexprs->at(array_index);
+ DCHECK(!subexpr->IsSpread());
+
+ // If the subexpression is a literal or a simple materialized literal it
+ // is already set in the cloned array.
+ if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
+
+ if (!result_saved) {
+ PushOperand(eax); // array literal.
+ result_saved = true;
+ }
+ VisitForAccumulatorValue(subexpr);
+
+ __ mov(StoreDescriptor::NameRegister(),
+ Immediate(Smi::FromInt(array_index)));
+ __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
+ CallKeyedStoreIC(expr->LiteralFeedbackSlot());
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(eax);
+ }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+ DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
+
+ Comment cmnt(masm_, "[ Assignment");
+
+ Property* property = expr->target()->AsProperty();
+ LhsKind assign_type = Property::GetAssignType(property);
+
+ // Evaluate LHS expression.
+ switch (assign_type) {
+ case VARIABLE:
+ // Nothing to do here.
+ break;
+ case NAMED_PROPERTY:
+ if (expr->is_compound()) {
+ // We need the receiver both on the stack and in the register.
+ VisitForStackValue(property->obj());
+ __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
+ } else {
+ VisitForStackValue(property->obj());
+ }
+ break;
+ case KEYED_PROPERTY: {
+ if (expr->is_compound()) {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize));
+ __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0));
+ } else {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ }
+ break;
+ }
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+
+ // For compound assignments we need another deoptimization point after the
+ // variable/property load.
+ if (expr->is_compound()) {
+ AccumulatorValueContext result_context(this);
+ { AccumulatorValueContext left_operand_context(this);
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableLoad(expr->target()->AsVariableProxy());
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyLoad(property);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyLoad(property);
+ break;
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+ }
+
+ Token::Value op = expr->binary_op();
+ PushOperand(eax); // Left operand goes on the stack.
+ VisitForAccumulatorValue(expr->value());
+
+ EmitBinaryOp(expr->binary_operation(), op);
+ } else {
+ VisitForAccumulatorValue(expr->value());
+ }
+
+ SetExpressionPosition(expr);
+
+ // Store the value.
+ switch (assign_type) {
+ case VARIABLE: {
+ VariableProxy* proxy = expr->target()->AsVariableProxy();
+ EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(),
+ proxy->hole_check_mode());
+ context()->Plug(eax);
+ break;
+ }
+ case NAMED_PROPERTY:
+ EmitNamedPropertyAssignment(expr);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyAssignment(expr);
+ break;
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+}
+
+void FullCodeGenerator::PushOperand(MemOperand operand) {
+ OperandStackDepthIncrement(1);
+ __ Push(operand);
+}
+
+void FullCodeGenerator::EmitOperandStackDepthCheck() {
+ if (FLAG_debug_code) {
+ int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp +
+ operand_stack_depth_ * kPointerSize;
+ __ mov(eax, ebp);
+ __ sub(eax, esp);
+ __ cmp(eax, Immediate(expected_diff));
+ __ Assert(equal, kUnexpectedStackDepth);
+ }
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
+ PopOperand(edx);
+ Handle<Code> code = CodeFactory::BinaryOperation(isolate(), op).code();
+ __ Call(code, RelocInfo::CODE_TARGET);
+ RestoreContext();
+ context()->Plug(eax);
+}
+
+void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackSlot slot) {
+ DCHECK(expr->IsValidReferenceExpressionOrThis());
+
+ Property* prop = expr->AsProperty();
+ LhsKind assign_type = Property::GetAssignType(prop);
+
+ switch (assign_type) {
+ case VARIABLE: {
+ VariableProxy* proxy = expr->AsVariableProxy();
+ EffectContext context(this);
+ EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot,
+ proxy->hole_check_mode());
+ break;
+ }
+ case NAMED_PROPERTY: {
+ PushOperand(eax); // Preserve value.
+ VisitForAccumulatorValue(prop->obj());
+ __ Move(StoreDescriptor::ReceiverRegister(), eax);
+ PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
+ CallStoreIC(slot, prop->key()->AsLiteral()->value());
+ break;
+ }
+ case KEYED_PROPERTY: {
+ PushOperand(eax); // Preserve value.
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ __ Move(StoreDescriptor::NameRegister(), eax);
+ PopOperand(StoreDescriptor::ReceiverRegister()); // Receiver.
+ PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
+ CallKeyedStoreIC(slot);
+ break;
+ }
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+ context()->Plug(eax);
+}
+
+
+void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
+ Variable* var, MemOperand location) {
+ __ mov(location, eax);
+ if (var->IsContextSlot()) {
+ __ mov(edx, eax);
+ int offset = Context::SlotOffset(var->index());
+ __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
+ }
+}
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
+ FeedbackSlot slot,
+ HoleCheckMode hole_check_mode) {
+ if (var->IsUnallocated()) {
+ // Global var, const, or let.
+ __ mov(StoreDescriptor::ReceiverRegister(), NativeContextOperand());
+ __ mov(StoreDescriptor::ReceiverRegister(),
+ ContextOperand(StoreDescriptor::ReceiverRegister(),
+ Context::EXTENSION_INDEX));
+ CallStoreIC(slot, var->name(), kStoreGlobal);
+
+ } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) {
+ DCHECK(!var->IsLookupSlot());
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ MemOperand location = VarOperand(var, ecx);
+ // Perform an initialization check for lexically declared variables.
+ if (hole_check_mode == HoleCheckMode::kRequired) {
+ Label assign;
+ __ mov(edx, location);
+ __ cmp(edx, isolate()->factory()->the_hole_value());
+ __ j(not_equal, &assign, Label::kNear);
+ __ push(Immediate(var->name()));
+ __ CallRuntime(Runtime::kThrowReferenceError);
+ __ bind(&assign);
+ }
+ if (var->mode() != CONST) {
+ EmitStoreToStackLocalOrContextSlot(var, location);
+ } else if (var->throw_on_const_assignment(language_mode())) {
+ __ CallRuntime(Runtime::kThrowConstAssignError);
+ }
+ } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
+ // Initializing assignment to const {this} needs a write barrier.
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ Label uninitialized_this;
+ MemOperand location = VarOperand(var, ecx);
+ __ mov(edx, location);
+ __ cmp(edx, isolate()->factory()->the_hole_value());
+ __ j(equal, &uninitialized_this);
+ __ push(Immediate(var->name()));
+ __ CallRuntime(Runtime::kThrowReferenceError);
+ __ bind(&uninitialized_this);
+ EmitStoreToStackLocalOrContextSlot(var, location);
+
+ } else {
+ DCHECK(var->mode() != CONST || op == Token::INIT);
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ DCHECK(!var->IsLookupSlot());
+ // Assignment to var or initializing assignment to let/const in harmony
+ // mode.
+ MemOperand location = VarOperand(var, ecx);
+ EmitStoreToStackLocalOrContextSlot(var, location);
+ }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a named store IC.
+ // eax : value
+ // esp[0] : receiver
+ Property* prop = expr->target()->AsProperty();
+ DCHECK(prop != NULL);
+ DCHECK(prop->key()->IsLiteral());
+
+ PopOperand(StoreDescriptor::ReceiverRegister());
+ CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value());
+ context()->Plug(eax);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a keyed store IC.
+ // eax : value
+ // esp[0] : key
+ // esp[kPointerSize] : receiver
+
+ PopOperand(StoreDescriptor::NameRegister()); // Key.
+ PopOperand(StoreDescriptor::ReceiverRegister());
+ DCHECK(StoreDescriptor::ValueRegister().is(eax));
+ CallKeyedStoreIC(expr->AssignmentSlot());
+ context()->Plug(eax);
+}
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
+ Expression* callee = expr->expression();
+
+ // Get the target function.
+ ConvertReceiverMode convert_mode;
+ if (callee->IsVariableProxy()) {
+ { StackValueContext context(this);
+ EmitVariableLoad(callee->AsVariableProxy());
+ }
+ // Push undefined as receiver. This is patched in the method prologue if it
+ // is a sloppy mode method.
+ PushOperand(isolate()->factory()->undefined_value());
+ convert_mode = ConvertReceiverMode::kNullOrUndefined;
+ } else {
+ // Load the function from the receiver.
+ DCHECK(callee->IsProperty());
+ DCHECK(!callee->AsProperty()->IsSuperAccess());
+ __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
+ EmitNamedPropertyLoad(callee->AsProperty());
+ // Push the target function under the receiver.
+ PushOperand(Operand(esp, 0));
+ __ mov(Operand(esp, kPointerSize), eax);
+ convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
+ }
+
+ EmitCall(expr, convert_mode);
+}
+
+
+// Code common for calls using the IC.
+void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
+ Expression* key) {
+ // Load the key.
+ VisitForAccumulatorValue(key);
+
+ Expression* callee = expr->expression();
+
+ // Load the function from the receiver.
+ DCHECK(callee->IsProperty());
+ __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
+ __ mov(LoadDescriptor::NameRegister(), eax);
+ EmitKeyedPropertyLoad(callee->AsProperty());
+
+ // Push the target function under the receiver.
+ PushOperand(Operand(esp, 0));
+ __ mov(Operand(esp, kPointerSize), eax);
+
+ EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
+}
+
+
+void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
+ // Load the arguments.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ SetCallPosition(expr, expr->tail_call_mode());
+ if (expr->tail_call_mode() == TailCallMode::kAllow) {
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceTailCall);
+ }
+ // Update profiling counters before the tail call since we will
+ // not return to this function.
+ EmitProfilingCounterHandlingForReturnSequence(true);
+ }
+ Handle<Code> code =
+ CodeFactory::CallICTrampoline(isolate(), mode, expr->tail_call_mode())
+ .code();
+ __ Move(edx, Immediate(SmiFromSlot(expr->CallFeedbackICSlot())));
+ __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
+ __ Move(eax, Immediate(arg_count));
+ CallIC(code);
+ OperandStackDepthDecrement(arg_count + 1);
+
+ RestoreContext();
+ context()->DropAndPlug(1, eax);
+}
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+ Comment cmnt(masm_, "[ CallNew");
+ // According to ECMA-262, section 11.2.2, page 44, the function
+ // expression in new calls must be evaluated before the
+ // arguments.
+
+ // Push constructor on the stack. If it's not a function it's used as
+ // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+ // ignored.
+ DCHECK(!expr->expression()->IsSuperPropertyReference());
+ VisitForStackValue(expr->expression());
+
+ // Push the arguments ("left-to-right") on the stack.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Call the construct call builtin that handles allocation and
+ // constructor invocation.
+ SetConstructCallPosition(expr);
+
+ // Load function and argument count into edi and eax.
+ __ Move(eax, Immediate(arg_count));
+ __ mov(edi, Operand(esp, arg_count * kPointerSize));
+
+ // Record call targets in unoptimized code.
+ __ EmitLoadFeedbackVector(ebx);
+ __ mov(edx, Immediate(SmiFromSlot(expr->CallNewFeedbackSlot())));
+
+ CallConstructStub stub(isolate());
+ CallIC(stub.GetCode());
+ OperandStackDepthDecrement(arg_count + 1);
+ RestoreContext();
+ context()->Plug(eax);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ test(eax, Immediate(kSmiTagMask));
+ Split(zero, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ebx);
+ Split(above_equal, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
+ Split(equal, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, JS_TYPED_ARRAY_TYPE, ebx);
+ Split(equal, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
+ &if_false, &fall_through);
+
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, JS_PROXY_TYPE, ebx);
+ Split(equal, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 1);
+ Label done, null, function, non_function_constructor;
+
+ VisitForAccumulatorValue(args->at(0));
+
+ // If the object is not a JSReceiver, we return null.
+ __ JumpIfSmi(eax, &null, Label::kNear);
+ STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, eax);
+ __ j(below, &null, Label::kNear);
+
+ // Return 'Function' for JSFunction and JSBoundFunction objects.
+ __ CmpInstanceType(eax, FIRST_FUNCTION_TYPE);
+ STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
+ __ j(above_equal, &function, Label::kNear);
+
+ // Check if the constructor in the map is a JS function.
+ __ GetMapConstructor(eax, eax, ebx);
+ __ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
+ __ j(not_equal, &non_function_constructor, Label::kNear);
+
+ // eax now contains the constructor function. Grab the
+ // instance class name from there.
+ __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset));
+ __ jmp(&done, Label::kNear);
+
+ // Non-JS objects have class null.
+ __ bind(&null);
+ __ mov(eax, isolate()->factory()->null_value());
+ __ jmp(&done, Label::kNear);
+
+ // Functions have class 'Function'.
+ __ bind(&function);
+ __ mov(eax, isolate()->factory()->Function_string());
+ __ jmp(&done, Label::kNear);
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ bind(&non_function_constructor);
+ __ mov(eax, isolate()->factory()->Object_string());
+
+ // All done.
+ __ bind(&done);
+
+ context()->Plug(eax);
+}
+
+void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK(args->length() == 2);
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Register object = ebx;
+ Register index = eax;
+ Register result = edx;
+
+ PopOperand(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
+ &need_conversion, &index_out_of_range);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // NaN.
+ __ Move(result, Immediate(isolate()->factory()->nan_value()));
+ __ jmp(&done);
+
+ __ bind(&need_conversion);
+ // Move the undefined value into the result register, which will
+ // trigger conversion.
+ __ Move(result, Immediate(isolate()->factory()->undefined_value()));
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitCall(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_LE(2, args->length());
+ // Push target, receiver and arguments onto the stack.
+ for (Expression* const arg : *args) {
+ VisitForStackValue(arg);
+ }
+ // Move target to edi.
+ int const argc = args->length() - 2;
+ __ mov(edi, Operand(esp, (argc + 1) * kPointerSize));
+ // Call the target.
+ __ mov(eax, Immediate(argc));
+ __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
+ OperandStackDepthDecrement(argc + 1);
+ RestoreContext();
+ // Discard the function left on TOS.
+ context()->DropAndPlug(1, eax);
+}
+
+void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ DCHECK_EQ(1, args->length());
+ VisitForAccumulatorValue(args->at(0));
+ __ AssertFunction(eax);
+ __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
+ __ mov(eax, FieldOperand(eax, Map::kPrototypeOffset));
+ context()->Plug(eax);
+}
+
+void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
+ DCHECK(expr->arguments()->length() == 0);
+ ExternalReference debug_is_active =
+ ExternalReference::debug_is_active_address(isolate());
+ __ movzx_b(eax, Operand::StaticVariable(debug_is_active));
+ __ SmiTag(eax);
+ context()->Plug(eax);
+}
+
+
+void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
+ // Push function.
+ __ LoadGlobalFunction(expr->context_index(), eax);
+ PushOperand(eax);
+
+ // Push undefined as receiver.
+ PushOperand(isolate()->factory()->undefined_value());
+}
+
+
+void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+
+ SetCallPosition(expr);
+ __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
+ __ Set(eax, arg_count);
+ __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
+ RelocInfo::CODE_TARGET);
+ OperandStackDepthDecrement(arg_count + 1);
+ RestoreContext();
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+ switch (expr->op()) {
+ case Token::DELETE: {
+ Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+ Property* property = expr->expression()->AsProperty();
+ VariableProxy* proxy = expr->expression()->AsVariableProxy();
+
+ if (property != NULL) {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ PushOperand(Smi::FromInt(language_mode()));
+ CallRuntimeWithOperands(Runtime::kDeleteProperty);
+ context()->Plug(eax);
+ } else if (proxy != NULL) {
+ Variable* var = proxy->var();
+ // Delete of an unqualified identifier is disallowed in strict mode but
+ // "delete this" is allowed.
+ bool is_this = var->is_this();
+ DCHECK(is_sloppy(language_mode()) || is_this);
+ if (var->IsUnallocated()) {
+ __ mov(eax, NativeContextOperand());
+ __ push(ContextOperand(eax, Context::EXTENSION_INDEX));
+ __ push(Immediate(var->name()));
+ __ Push(Smi::FromInt(SLOPPY));
+ __ CallRuntime(Runtime::kDeleteProperty);
+ context()->Plug(eax);
+ } else {
+ DCHECK(!var->IsLookupSlot());
+ DCHECK(var->IsStackAllocated() || var->IsContextSlot());
+ // Result of deleting non-global variables is false. 'this' is
+ // not really a variable, though we implement it as one. The
+ // subexpression does not have side effects.
+ context()->Plug(is_this);
+ }
+ } else {
+ // Result of deleting non-property, non-variable reference is true.
+ // The subexpression may have side effects.
+ VisitForEffect(expr->expression());
+ context()->Plug(true);
+ }
+ break;
+ }
+
+ case Token::VOID: {
+ Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+ VisitForEffect(expr->expression());
+ context()->Plug(isolate()->factory()->undefined_value());
+ break;
+ }
+
+ case Token::NOT: {
+ Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+ if (context()->IsEffect()) {
+ // Unary NOT has no side effects so it's only necessary to visit the
+ // subexpression. Match the optimizing compiler by not branching.
+ VisitForEffect(expr->expression());
+ } else if (context()->IsTest()) {
+ const TestContext* test = TestContext::cast(context());
+ // The labels are swapped for the recursive call.
+ VisitForControl(expr->expression(),
+ test->false_label(),
+ test->true_label(),
+ test->fall_through());
+ context()->Plug(test->true_label(), test->false_label());
+ } else {
+ // We handle value contexts explicitly rather than simply visiting
+ // for control and plugging the control flow into the context,
+ // because we need to prepare a pair of extra administrative AST ids
+ // for the optimizing compiler.
+ DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
+ Label materialize_true, materialize_false, done;
+ VisitForControl(expr->expression(),
+ &materialize_false,
+ &materialize_true,
+ &materialize_true);
+ if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1);
+ __ bind(&materialize_true);
+ if (context()->IsAccumulatorValue()) {
+ __ mov(eax, isolate()->factory()->true_value());
+ } else {
+ __ Push(isolate()->factory()->true_value());
+ }
+ __ jmp(&done, Label::kNear);
+ __ bind(&materialize_false);
+ if (context()->IsAccumulatorValue()) {
+ __ mov(eax, isolate()->factory()->false_value());
+ } else {
+ __ Push(isolate()->factory()->false_value());
+ }
+ __ bind(&done);
+ }
+ break;
+ }
+
+ case Token::TYPEOF: {
+ Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+ {
+ AccumulatorValueContext context(this);
+ VisitForTypeofValue(expr->expression());
+ }
+ __ mov(ebx, eax);
+ __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET);
+ context()->Plug(eax);
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+ DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
+
+ Comment cmnt(masm_, "[ CountOperation");
+
+ Property* prop = expr->expression()->AsProperty();
+ LhsKind assign_type = Property::GetAssignType(prop);
+
+ // Evaluate expression and get value.
+ if (assign_type == VARIABLE) {
+ DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
+ AccumulatorValueContext context(this);
+ EmitVariableLoad(expr->expression()->AsVariableProxy());
+ } else {
+ // Reserve space for result of postfix operation.
+ if (expr->is_postfix() && !context()->IsEffect()) {
+ PushOperand(Smi::kZero);
+ }
+ switch (assign_type) {
+ case NAMED_PROPERTY: {
+ // Put the object both on the stack and in the register.
+ VisitForStackValue(prop->obj());
+ __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
+ EmitNamedPropertyLoad(prop);
+ break;
+ }
+
+ case KEYED_PROPERTY: {
+ VisitForStackValue(prop->obj());
+ VisitForStackValue(prop->key());
+ __ mov(LoadDescriptor::ReceiverRegister(),
+ Operand(esp, kPointerSize)); // Object.
+ __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0)); // Key.
+ EmitKeyedPropertyLoad(prop);
+ break;
+ }
+
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ case VARIABLE:
+ UNREACHABLE();
+ }
+ }
+
+ // Convert old value into a number.
+ __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+
+ // Save result for postfix expressions.
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ // Save the result on the stack. If we have a named or keyed property
+ // we store the result under the receiver that is currently on top
+ // of the stack.
+ switch (assign_type) {
+ case VARIABLE:
+ PushOperand(eax);
+ break;
+ case NAMED_PROPERTY:
+ __ mov(Operand(esp, kPointerSize), eax);
+ break;
+ case KEYED_PROPERTY:
+ __ mov(Operand(esp, 2 * kPointerSize), eax);
+ break;
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+
+ SetExpressionPosition(expr);
+
+ // Call stub for +1/-1.
+ __ mov(edx, eax);
+ __ mov(eax, Immediate(Smi::FromInt(1)));
+ Handle<Code> code =
+ CodeFactory::BinaryOperation(isolate(), expr->binary_op()).code();
+ __ Call(code, RelocInfo::CODE_TARGET);
+ RestoreContext();
+
+ // Store the value returned in eax.
+ switch (assign_type) {
+ case VARIABLE: {
+ VariableProxy* proxy = expr->expression()->AsVariableProxy();
+ if (expr->is_postfix()) {
+ // Perform the assignment as if via '='.
+ { EffectContext context(this);
+ EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
+ proxy->hole_check_mode());
+ context.Plug(eax);
+ }
+ // For all contexts except EffectContext We have the result on
+ // top of the stack.
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ // Perform the assignment as if via '='.
+ EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
+ proxy->hole_check_mode());
+ context()->Plug(eax);
+ }
+ break;
+ }
+ case NAMED_PROPERTY: {
+ PopOperand(StoreDescriptor::ReceiverRegister());
+ CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value());
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(eax);
+ }
+ break;
+ }
+ case KEYED_PROPERTY: {
+ PopOperand(StoreDescriptor::NameRegister());
+ PopOperand(StoreDescriptor::ReceiverRegister());
+ CallKeyedStoreIC(expr->CountSlot());
+ if (expr->is_postfix()) {
+ // Result is on the stack
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(eax);
+ }
+ break;
+ }
+ case NAMED_SUPER_PROPERTY:
+ case KEYED_SUPER_PROPERTY:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
+ Expression* sub_expr,
+ Handle<String> check) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ { AccumulatorValueContext context(this);
+ VisitForTypeofValue(sub_expr);
+ }
+
+ Factory* factory = isolate()->factory();
+ if (String::Equals(check, factory->number_string())) {
+ __ JumpIfSmi(eax, if_true);
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ Split(equal, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->string_string())) {
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
+ Split(below, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->symbol_string())) {
+ __ JumpIfSmi(eax, if_false);
+ __ CmpObjectType(eax, SYMBOL_TYPE, edx);
+ Split(equal, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->boolean_string())) {
+ __ cmp(eax, isolate()->factory()->true_value());
+ __ j(equal, if_true);
+ __ cmp(eax, isolate()->factory()->false_value());
+ Split(equal, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->undefined_string())) {
+ __ cmp(eax, isolate()->factory()->null_value());
+ __ j(equal, if_false);
+ __ JumpIfSmi(eax, if_false);
+ // Check for undetectable objects => true.
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ Split(not_zero, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->function_string())) {
+ __ JumpIfSmi(eax, if_false);
+ // Check for callable and not undetectable objects => true.
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset));
+ __ and_(ecx, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
+ __ cmp(ecx, 1 << Map::kIsCallable);
+ Split(equal, if_true, if_false, fall_through);
+ } else if (String::Equals(check, factory->object_string())) {
+ __ JumpIfSmi(eax, if_false);
+ __ cmp(eax, isolate()->factory()->null_value());
+ __ j(equal, if_true);
+ STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, edx);
+ __ j(below, if_false);
+ // Check for callable or undetectable objects => false.
+ __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
+ Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
+ Split(zero, if_true, if_false, fall_through);
+ } else {
+ if (if_false != fall_through) __ jmp(if_false);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+ Comment cmnt(masm_, "[ CompareOperation");
+
+ // First we try a fast inlined version of the compare when one of
+ // the operands is a literal.
+ if (TryLiteralCompare(expr)) return;
+
+ // Always perform the comparison for its control flow. Pack the result
+ // into the expression's context after the comparison is performed.
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ Token::Value op = expr->op();
+ VisitForStackValue(expr->left());
+ switch (op) {
+ case Token::IN:
+ VisitForStackValue(expr->right());
+ SetExpressionPosition(expr);
+ EmitHasProperty();
+ __ cmp(eax, isolate()->factory()->true_value());
+ Split(equal, if_true, if_false, fall_through);
+ break;
+
+ case Token::INSTANCEOF: {
+ VisitForAccumulatorValue(expr->right());
+ SetExpressionPosition(expr);
+ PopOperand(edx);
+ __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET);
+ RestoreContext();
+ __ cmp(eax, isolate()->factory()->true_value());
+ Split(equal, if_true, if_false, fall_through);
+ break;
+ }
+
+ default: {
+ VisitForAccumulatorValue(expr->right());
+ SetExpressionPosition(expr);
+ Condition cc = CompareIC::ComputeCondition(op);
+ PopOperand(edx);
+
+ bool inline_smi_code = ShouldInlineSmiCase(op);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ mov(ecx, edx);
+ __ or_(ecx, eax);
+ patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
+ __ cmp(edx, eax);
+ Split(cc, if_true, if_false, NULL);
+ __ bind(&slow_case);
+ }
+
+ Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
+ CallIC(ic);
+ patch_site.EmitPatchInfo();
+
+ __ test(eax, eax);
+ Split(cc, if_true, if_false, fall_through);
+ }
+ }
+
+ // Convert the result of the comparison into one expected for this
+ // expression's context.
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
+ Expression* sub_expr,
+ NilValue nil) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ VisitForAccumulatorValue(sub_expr);
+
+ Handle<HeapObject> nil_value = nil == kNullValue
+ ? isolate()->factory()->null_value()
+ : isolate()->factory()->undefined_value();
+ if (expr->op() == Token::EQ_STRICT) {
+ __ cmp(eax, nil_value);
+ Split(equal, if_true, if_false, fall_through);
+ } else {
+ __ JumpIfSmi(eax, if_false);
+ __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(eax, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ Split(not_zero, if_true, if_false, fall_through);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+Register FullCodeGenerator::result_register() {
+ return eax;
+}
+
+
+Register FullCodeGenerator::context_register() {
+ return esi;
+}
+
+void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) {
+ DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+ __ mov(value, Operand(ebp, frame_offset));
+}
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+ DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+ __ mov(Operand(ebp, frame_offset), value);
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+ __ mov(dst, ContextOperand(esi, context_index));
+}
+
+
+void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
+ DeclarationScope* closure_scope = scope()->GetClosureScope();
+ if (closure_scope->is_script_scope() ||
+ closure_scope->is_module_scope()) {
+ // Contexts nested in the native context have a canonical empty function
+ // as their closure, not the anonymous closure containing the global
+ // code.
+ __ mov(eax, NativeContextOperand());
+ PushOperand(ContextOperand(eax, Context::CLOSURE_INDEX));
+ } else if (closure_scope->is_eval_scope()) {
+ // Contexts nested inside eval code have the same closure as the context
+ // calling eval, not the anonymous closure containing the eval code.
+ // Fetch it from the context.
+ PushOperand(ContextOperand(esi, Context::CLOSURE_INDEX));
+ } else {
+ DCHECK(closure_scope->is_function_scope());
+ PushOperand(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ }
+}
+
+
+#undef __
+
+
+static const byte kJnsInstruction = 0x79;
+static const byte kJnsOffset = 0x11;
+static const byte kNopByteOne = 0x66;
+static const byte kNopByteTwo = 0x90;
+#ifdef DEBUG
+static const byte kCallInstruction = 0xe8;
+#endif
+
+
+void BackEdgeTable::PatchAt(Code* unoptimized_code,
+ Address pc,
+ BackEdgeState target_state,
+ Code* replacement_code) {
+ Address call_target_address = pc - kIntSize;
+ Address jns_instr_address = call_target_address - 3;
+ Address jns_offset_address = call_target_address - 2;
+
+ switch (target_state) {
+ case INTERRUPT:
+ // sub <profiling_counter>, <delta> ;; Not changed
+ // jns ok
+ // call <interrupt stub>
+ // ok:
+ *jns_instr_address = kJnsInstruction;
+ *jns_offset_address = kJnsOffset;
+ break;
+ case ON_STACK_REPLACEMENT:
+ // sub <profiling_counter>, <delta> ;; Not changed
+ // nop
+ // nop
+ // call <on-stack replacment>
+ // ok:
+ *jns_instr_address = kNopByteOne;
+ *jns_offset_address = kNopByteTwo;
+ break;
+ }
+
+ Assembler::set_target_address_at(unoptimized_code->GetIsolate(),
+ call_target_address, unoptimized_code,
+ replacement_code->entry());
+ unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
+ unoptimized_code, call_target_address, replacement_code);
+}
+
+
+BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
+ Isolate* isolate,
+ Code* unoptimized_code,
+ Address pc) {
+ Address call_target_address = pc - kIntSize;
+ Address jns_instr_address = call_target_address - 3;
+ DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
+
+ if (*jns_instr_address == kJnsInstruction) {
+ DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
+ DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
+ Assembler::target_address_at(call_target_address,
+ unoptimized_code));
+ return INTERRUPT;
+ }
+
+ DCHECK_EQ(kNopByteOne, *jns_instr_address);
+ DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
+
+ DCHECK_EQ(
+ isolate->builtins()->OnStackReplacement()->entry(),
+ Assembler::target_address_at(call_target_address, unoptimized_code));
+ return ON_STACK_REPLACEMENT;
+}
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/full-codegen/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/full-codegen/x87/OWNERS 2017-12-25 17:42:57.211465705 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/gdb-jit.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/gdb-jit.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/gdb-jit.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/gdb-jit.cc 2017-12-25 17:42:57.213465676 +0100
@@ -199,7 +199,7 @@
struct MachOSectionHeader {
char sectname[16];
char segname[16];
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
uint32_t addr;
uint32_t size;
#else
@@ -507,7 +507,7 @@
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
@@ -533,7 +533,7 @@
Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
DCHECK(w->position() == 0);
Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
header->magic = 0xFEEDFACEu;
header->cputype = 7; // i386
header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL
@@ -558,7 +558,7 @@
uintptr_t code_size) {
Writer::Slot<MachOSegmentCommand> cmd =
w->CreateSlotHere<MachOSegmentCommand>();
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
cmd->cmd = LC_SEGMENT_32;
#else
cmd->cmd = LC_SEGMENT_64;
@@ -646,7 +646,7 @@
void WriteHeader(Writer* w) {
DCHECK(w->position() == 0);
Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
-#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
+#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
const uint8_t ident[16] =
{ 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
@@ -668,7 +668,7 @@
#endif
memcpy(header->ident, ident, 16);
header->type = 1;
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
header->machine = 3;
#elif V8_TARGET_ARCH_X64
// Processor identification value for x64 is 62 as defined in
@@ -783,8 +783,8 @@
Binding binding() const {
return static_cast<Binding>(info >> 4);
}
-#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
- (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \
+#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
+ (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \
(V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
struct SerializedLayout {
SerializedLayout(uint32_t name,
@@ -1146,7 +1146,7 @@
w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
uintptr_t fb_block_start = w->position();
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32
#elif V8_TARGET_ARCH_X64
w->Write<uint8_t>(DW_OP_reg6); // and here on x64.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/globals.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/globals.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/globals.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/globals.h 2017-12-25 17:42:57.214465661 +0100
@@ -167,7 +167,7 @@
const int kPCOnStackSize = kRegisterSize;
const int kFPOnStackSize = kRegisterSize;
-#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
#else
const int kElidedFrameSlots = 0;
@@ -912,10 +912,16 @@
};
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
+// The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
+// memmory.
+// Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
+// issue
+// for some test cases.
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
- (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
+ (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
+ (V8_TARGET_ARCH_X87)
const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
#else
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/access-compiler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/access-compiler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/access-compiler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/access-compiler-x87.cc 2017-12-25 17:42:57.214465661 +0100
@@ -0,0 +1,40 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/ic/access-compiler.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+void PropertyAccessCompiler::GenerateTailCall(MacroAssembler* masm,
+ Handle<Code> code) {
+ __ jmp(code, RelocInfo::CODE_TARGET);
+}
+
+void PropertyAccessCompiler::InitializePlatformSpecific(
+ AccessCompilerData* data) {
+ Register receiver = LoadDescriptor::ReceiverRegister();
+ Register name = LoadDescriptor::NameRegister();
+
+ // Load calling convention.
+ // receiver, name, scratch1, scratch2, scratch3.
+ Register load_registers[] = {receiver, name, ebx, eax, edi};
+
+ // Store calling convention.
+ // receiver, name, scratch1, scratch2.
+ Register store_registers[] = {receiver, name, ebx, edi};
+
+ data->Initialize(arraysize(load_registers), load_registers,
+ arraysize(store_registers), store_registers);
+}
+
+#undef __
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/handler-compiler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/handler-compiler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/handler-compiler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/handler-compiler-x87.cc 2017-12-25 17:42:57.215465646 +0100
@@ -0,0 +1,450 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/ic/handler-compiler.h"
+
+#include "src/api-arguments.h"
+#include "src/field-type.h"
+#include "src/ic/call-optimization.h"
+#include "src/ic/ic.h"
+#include "src/isolate-inl.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+void NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(
+ MacroAssembler* masm) {
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ // If we generate a global code snippet for deoptimization only, remember
+ // the place to continue after deoptimization.
+ masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
+ // Restore context register.
+ __ pop(esi);
+ }
+ __ ret(0);
+}
+
+
+void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
+ Register slot) {
+ MacroAssembler* masm = this->masm();
+ STATIC_ASSERT(LoadWithVectorDescriptor::kSlot <
+ LoadWithVectorDescriptor::kVector);
+ STATIC_ASSERT(StoreWithVectorDescriptor::kSlot <
+ StoreWithVectorDescriptor::kVector);
+ STATIC_ASSERT(StoreTransitionDescriptor::kSlot <
+ StoreTransitionDescriptor::kVector);
+ __ push(slot);
+ __ push(vector);
+}
+
+
+void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
+ MacroAssembler* masm = this->masm();
+ __ pop(vector);
+ __ pop(slot);
+}
+
+
+void PropertyHandlerCompiler::DiscardVectorAndSlot() {
+ MacroAssembler* masm = this->masm();
+ // Remove vector and slot.
+ __ add(esp, Immediate(2 * kPointerSize));
+}
+
+void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
+ MacroAssembler* masm, Label* miss_label, Register receiver,
+ Handle<Name> name, Register scratch0, Register scratch1) {
+ DCHECK(name->IsUniqueName());
+ DCHECK(!receiver.is(scratch0));
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->negative_lookups(), 1);
+ __ IncrementCounter(counters->negative_lookups_miss(), 1);
+
+ __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
+
+ const int kInterceptorOrAccessCheckNeededMask =
+ (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
+
+ // Bail out if the receiver has a named interceptor or requires access checks.
+ __ test_b(FieldOperand(scratch0, Map::kBitFieldOffset),
+ Immediate(kInterceptorOrAccessCheckNeededMask));
+ __ j(not_zero, miss_label);
+
+ // Check that receiver is a JSObject.
+ __ CmpInstanceType(scratch0, FIRST_JS_RECEIVER_TYPE);
+ __ j(below, miss_label);
+
+ // Load properties array.
+ Register properties = scratch0;
+ __ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOrHashOffset));
+
+ // Check that the properties array is a dictionary.
+ __ cmp(FieldOperand(properties, HeapObject::kMapOffset),
+ Immediate(masm->isolate()->factory()->hash_table_map()));
+ __ j(not_equal, miss_label);
+
+ Label done;
+ NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done,
+ properties, name, scratch1);
+ __ bind(&done);
+ __ DecrementCounter(counters->negative_lookups_miss(), 1);
+}
+
+// Generate call to api function.
+// This function uses push() to generate smaller, faster code than
+// the version above. It is an optimization that should will be removed
+// when api call ICs are generated in hydrogen.
+void PropertyHandlerCompiler::GenerateApiAccessorCall(
+ MacroAssembler* masm, const CallOptimization& optimization,
+ Handle<Map> receiver_map, Register receiver, Register scratch,
+ bool is_store, Register store_parameter, Register accessor_holder,
+ int accessor_index) {
+ DCHECK(!accessor_holder.is(scratch));
+ // Copy return value.
+ __ pop(scratch);
+
+ if (is_store) {
+ // Discard stack arguments.
+ __ add(esp, Immediate(StoreWithVectorDescriptor::kStackArgumentsCount *
+ kPointerSize));
+ }
+ // Write the receiver and arguments to stack frame.
+ __ push(receiver);
+ if (is_store) {
+ DCHECK(!AreAliased(receiver, scratch, store_parameter));
+ __ push(store_parameter);
+ }
+ __ push(scratch);
+ // Stack now matches JSFunction abi.
+ DCHECK(optimization.is_simple_api_call());
+
+ // Abi for CallApiCallbackStub.
+ Register callee = edi;
+ Register data = ebx;
+ Register holder = ecx;
+ Register api_function_address = edx;
+ scratch = no_reg;
+
+ // Put callee in place.
+ __ LoadAccessor(callee, accessor_holder, accessor_index,
+ is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER);
+
+ // Put holder in place.
+ CallOptimization::HolderLookup holder_lookup;
+ optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup);
+ switch (holder_lookup) {
+ case CallOptimization::kHolderIsReceiver:
+ __ Move(holder, receiver);
+ break;
+ case CallOptimization::kHolderFound:
+ __ mov(holder, FieldOperand(receiver, HeapObject::kMapOffset));
+ __ mov(holder, FieldOperand(holder, Map::kPrototypeOffset));
+ break;
+ case CallOptimization::kHolderNotFound:
+ UNREACHABLE();
+ break;
+ }
+
+ Isolate* isolate = masm->isolate();
+ Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
+ bool call_data_undefined = false;
+ // Put call data in place.
+ if (api_call_info->data()->IsUndefined(isolate)) {
+ call_data_undefined = true;
+ __ mov(data, Immediate(isolate->factory()->undefined_value()));
+ } else {
+ if (optimization.is_constant_call()) {
+ __ mov(data, FieldOperand(callee, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(data, FieldOperand(data, SharedFunctionInfo::kFunctionDataOffset));
+ __ mov(data, FieldOperand(data, FunctionTemplateInfo::kCallCodeOffset));
+ } else {
+ __ mov(data, FieldOperand(callee, FunctionTemplateInfo::kCallCodeOffset));
+ }
+ __ mov(data, FieldOperand(data, CallHandlerInfo::kDataOffset));
+ }
+
+ // Put api_function_address in place.
+ Address function_address = v8::ToCData<Address>(api_call_info->callback());
+ __ mov(api_function_address, Immediate(function_address));
+
+ // Jump to stub.
+ CallApiCallbackStub stub(isolate, is_store, call_data_undefined,
+ !optimization.is_constant_call());
+ __ TailCallStub(&stub);
+}
+
+
+// Generate code to check that a global property cell is empty. Create
+// the property cell at compilation time if no cell exists for the
+// property.
+void PropertyHandlerCompiler::GenerateCheckPropertyCell(
+ MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
+ Register scratch, Label* miss) {
+ Handle<PropertyCell> cell = JSGlobalObject::EnsureEmptyPropertyCell(
+ global, name, PropertyCellType::kInvalidated);
+ Isolate* isolate = masm->isolate();
+ DCHECK(cell->value()->IsTheHole(isolate));
+ Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
+ __ LoadWeakValue(scratch, weak_cell, miss);
+ __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
+ Immediate(isolate->factory()->the_hole_value()));
+ __ j(not_equal, miss);
+}
+
+
+void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
+ MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
+ int accessor_index, int expected_arguments, Register scratch) {
+ // ----------- S t a t e -------------
+ // -- esp[12] : value
+ // -- esp[8] : slot
+ // -- esp[4] : vector
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ LoadParameterFromStack<Descriptor>(value(), Descriptor::kValue);
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Save context register
+ __ push(esi);
+ // Save value register, so we can restore it later.
+ __ push(value());
+
+ if (accessor_index >= 0) {
+ DCHECK(!holder.is(scratch));
+ DCHECK(!receiver.is(scratch));
+ DCHECK(!value().is(scratch));
+ // Call the JavaScript setter with receiver and value on the stack.
+ if (map->IsJSGlobalObjectMap()) {
+ __ mov(scratch,
+ FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
+ receiver = scratch;
+ }
+ __ push(receiver);
+ __ push(value());
+ __ LoadAccessor(edi, holder, accessor_index, ACCESSOR_SETTER);
+ __ Set(eax, 1);
+ __ Call(masm->isolate()->builtins()->CallFunction(
+ ConvertReceiverMode::kNotNullOrUndefined),
+ RelocInfo::CODE_TARGET);
+ } else {
+ // If we generate a global code snippet for deoptimization only, remember
+ // the place to continue after deoptimization.
+ masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
+ }
+
+ // We have to return the passed value, not the return value of the setter.
+ __ pop(eax);
+ // Restore context register.
+ __ pop(esi);
+ }
+ if (accessor_index >= 0) {
+ __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
+ } else {
+ // If we generate a global code snippet for deoptimization only, don't try
+ // to drop stack arguments for the StoreIC because they are not a part of
+ // expression stack and deoptimizer does not reconstruct them.
+ __ ret(0);
+ }
+}
+
+#undef __
+#define __ ACCESS_MASM(masm())
+
+
+void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
+ Handle<Name> name) {
+ if (!label->is_unused()) {
+ __ bind(label);
+ __ mov(this->name(), Immediate(name));
+ }
+}
+
+void PropertyHandlerCompiler::GenerateAccessCheck(
+ Handle<WeakCell> native_context_cell, Register scratch1, Register scratch2,
+ Label* miss, bool compare_native_contexts_only) {
+ Label done;
+ // Load current native context.
+ __ mov(scratch1, NativeContextOperand());
+ // Load expected native context.
+ __ LoadWeakValue(scratch2, native_context_cell, miss);
+ __ cmp(scratch1, scratch2);
+
+ if (!compare_native_contexts_only) {
+ __ j(equal, &done);
+
+ // Compare security tokens of current and expected native contexts.
+ __ mov(scratch1, ContextOperand(scratch1, Context::SECURITY_TOKEN_INDEX));
+ __ mov(scratch2, ContextOperand(scratch2, Context::SECURITY_TOKEN_INDEX));
+ __ cmp(scratch1, scratch2);
+ }
+ __ j(not_equal, miss);
+
+ __ bind(&done);
+}
+
+Register PropertyHandlerCompiler::CheckPrototypes(
+ Register object_reg, Register holder_reg, Register scratch1,
+ Register scratch2, Handle<Name> name, Label* miss) {
+ Handle<Map> receiver_map = map();
+
+ // Make sure there's no overlap between holder and object registers.
+ DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
+ DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
+ !scratch2.is(scratch1));
+
+ Handle<Cell> validity_cell =
+ Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
+ if (!validity_cell.is_null()) {
+ DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value());
+ // Operand::ForCell(...) points to the cell's payload!
+ __ cmp(Operand::ForCell(validity_cell),
+ Immediate(Smi::FromInt(Map::kPrototypeChainValid)));
+ __ j(not_equal, miss);
+ }
+
+ // Keep track of the current object in register reg.
+ Register reg = object_reg;
+ int depth = 0;
+
+ Handle<JSObject> current = Handle<JSObject>::null();
+ if (receiver_map->IsJSGlobalObjectMap()) {
+ current = isolate()->global_object();
+ }
+
+ Handle<Map> current_map(receiver_map->GetPrototypeChainRootMap(isolate()),
+ isolate());
+ Handle<Map> holder_map(holder()->map());
+ // Traverse the prototype chain and check the maps in the prototype chain for
+ // fast and global objects or do negative lookup for normal objects.
+ while (!current_map.is_identical_to(holder_map)) {
+ ++depth;
+
+ if (current_map->IsJSGlobalObjectMap()) {
+ GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
+ name, scratch2, miss);
+ } else if (current_map->is_dictionary_map()) {
+ DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
+ DCHECK(name->IsUniqueName());
+ DCHECK(current.is_null() ||
+ current->property_dictionary()->FindEntry(name) ==
+ NameDictionary::kNotFound);
+
+ if (depth > 1) {
+ Handle<WeakCell> weak_cell =
+ Map::GetOrCreatePrototypeWeakCell(current, isolate());
+ __ LoadWeakValue(reg, weak_cell, miss);
+ }
+ GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
+ scratch2);
+ }
+
+ reg = holder_reg; // From now on the object will be in holder_reg.
+ // Go to the next object in the prototype chain.
+ current = handle(JSObject::cast(current_map->prototype()));
+ current_map = handle(current->map());
+ }
+
+ DCHECK(!current_map->IsJSGlobalProxyMap());
+
+ // Log the check depth.
+ LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
+
+ if (depth != 0) {
+ Handle<WeakCell> weak_cell =
+ Map::GetOrCreatePrototypeWeakCell(current, isolate());
+ __ LoadWeakValue(reg, weak_cell, miss);
+ }
+
+ // Return the register containing the holder.
+ return reg;
+}
+
+
+void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
+ if (!miss->is_unused()) {
+ Label success;
+ __ jmp(&success);
+ __ bind(miss);
+ if (IC::ShouldPushPopSlotAndVector(kind())) {
+ DCHECK(kind() == Code::LOAD_IC);
+ PopVectorAndSlot();
+ }
+ TailCallBuiltin(masm(), MissBuiltin(kind()));
+ __ bind(&success);
+ }
+}
+
+
+void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
+ if (!miss->is_unused()) {
+ Label success;
+ __ jmp(&success);
+ GenerateRestoreName(miss, name);
+ DCHECK(!IC::ShouldPushPopSlotAndVector(kind()));
+ TailCallBuiltin(masm(), MissBuiltin(kind()));
+ __ bind(&success);
+ }
+}
+
+void NamedStoreHandlerCompiler::ZapStackArgumentsRegisterAliases() {
+ // Zap register aliases of the arguments passed on the stack to ensure they
+ // are properly loaded by the handler (debug-only).
+ STATIC_ASSERT(Descriptor::kPassLastArgsOnStack);
+ STATIC_ASSERT(Descriptor::kStackArgumentsCount == 3);
+ __ mov(Descriptor::ValueRegister(), Immediate(kDebugZapValue));
+ __ mov(Descriptor::SlotRegister(), Immediate(kDebugZapValue));
+ __ mov(Descriptor::VectorRegister(), Immediate(kDebugZapValue));
+}
+
+Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
+ Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> callback,
+ LanguageMode language_mode) {
+ Register holder_reg = Frontend(name);
+ __ LoadParameterFromStack<Descriptor>(value(), Descriptor::kValue);
+
+ __ pop(scratch1()); // remove the return address
+ // Discard stack arguments.
+ __ add(esp, Immediate(StoreWithVectorDescriptor::kStackArgumentsCount *
+ kPointerSize));
+ __ push(receiver());
+ __ push(holder_reg);
+ // If the callback cannot leak, then push the callback directly,
+ // otherwise wrap it in a weak cell.
+ if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) {
+ __ Push(callback);
+ } else {
+ Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback);
+ __ Push(cell);
+ }
+ __ Push(name);
+ __ push(value());
+ __ push(Immediate(Smi::FromInt(language_mode)));
+ __ push(scratch1()); // restore return address
+
+ // Do tail-call to the runtime system.
+ __ TailCallRuntime(Runtime::kStoreCallbackProperty);
+
+ // Return the generated code.
+ return GetCode(kind(), name);
+}
+
+
+Register NamedStoreHandlerCompiler::value() {
+ return StoreDescriptor::ValueRegister();
+}
+
+
+#undef __
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/ic-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/ic-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/ic-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/ic-x87.cc 2017-12-25 17:42:57.215465646 +0100
@@ -0,0 +1,84 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/codegen.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+Condition CompareIC::ComputeCondition(Token::Value op) {
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ return equal;
+ case Token::LT:
+ return less;
+ case Token::GT:
+ return greater;
+ case Token::LTE:
+ return less_equal;
+ case Token::GTE:
+ return greater_equal;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+bool CompareIC::HasInlinedSmiCode(Address address) {
+ // The address of the instruction following the call.
+ Address test_instruction_address =
+ address + Assembler::kCallTargetAddressOffset;
+
+ // If the instruction following the call is not a test al, nothing
+ // was inlined.
+ return *test_instruction_address == Assembler::kTestAlByte;
+}
+
+
+void PatchInlinedSmiCode(Isolate* isolate, Address address,
+ InlinedSmiCheck check) {
+ // The address of the instruction following the call.
+ Address test_instruction_address =
+ address + Assembler::kCallTargetAddressOffset;
+
+ // If the instruction following the call is not a test al, nothing
+ // was inlined.
+ if (*test_instruction_address != Assembler::kTestAlByte) {
+ DCHECK(*test_instruction_address == Assembler::kNopByte);
+ return;
+ }
+
+ Address delta_address = test_instruction_address + 1;
+ // The delta to the start of the map check instruction and the
+ // condition code uses at the patched jump.
+ uint8_t delta = *reinterpret_cast<uint8_t*>(delta_address);
+ if (FLAG_trace_ic) {
+ LOG(isolate, PatchIC(address, test_instruction_address, delta));
+ }
+
+ // Patch with a short conditional jump. Enabling means switching from a short
+ // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
+ // reverse operation of that.
+ Address jmp_address = test_instruction_address - delta;
+ DCHECK((check == ENABLE_INLINED_SMI_CHECK)
+ ? (*jmp_address == Assembler::kJncShortOpcode ||
+ *jmp_address == Assembler::kJcShortOpcode)
+ : (*jmp_address == Assembler::kJnzShortOpcode ||
+ *jmp_address == Assembler::kJzShortOpcode));
+ Condition cc =
+ (check == ENABLE_INLINED_SMI_CHECK)
+ ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
+ : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
+ *jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
+}
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/ic/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/ic/x87/OWNERS 2017-12-25 17:42:57.214465661 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/inspector/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/inspector/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/inspector/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/inspector/BUILD.gn 2017-12-25 13:05:24.029939435 +0100
@@ -106,7 +106,7 @@
"/wd4996", # Deprecated function call.
]
}
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
defines = [ "BUILDING_V8_SHARED" ]
}
}
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/interface-descriptors.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/interface-descriptors.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/interface-descriptors.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/interface-descriptors.h 2017-12-25 17:42:57.215465646 +0100
@@ -392,7 +392,7 @@
static const Register ValueRegister();
static const Register SlotRegister();
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
static const bool kPassLastArgsOnStack = true;
#else
static const bool kPassLastArgsOnStack = false;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/interpreter/interpreter-assembler.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/interpreter/interpreter-assembler.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/interpreter/interpreter-assembler.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/interpreter/interpreter-assembler.cc 2017-12-25 17:42:57.215465646 +0100
@@ -1367,8 +1367,9 @@
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
return false;
-#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \
- V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC
+#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_X87 || \
+ V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || \
+ V8_TARGET_ARCH_PPC
return true;
#else
#error "Unknown Architecture"
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/log.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/log.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/log.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/log.cc 2017-12-25 17:42:57.216465632 +0100
@@ -370,6 +370,8 @@
const char arch[] = "ppc";
#elif V8_TARGET_ARCH_MIPS
const char arch[] = "mips";
+#elif V8_TARGET_ARCH_X87
+ const char arch[] = "x87";
#elif V8_TARGET_ARCH_ARM64
const char arch[] = "arm64";
#elif V8_TARGET_ARCH_S390
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/macro-assembler.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/macro-assembler.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/macro-assembler.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/macro-assembler.h 2017-12-25 17:42:57.216465632 +0100
@@ -52,6 +52,8 @@
#elif V8_TARGET_ARCH_S390
#include "src/s390/constants-s390.h"
#include "src/s390/macro-assembler-s390.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/macro-assembler-x87.h"
#else
#error Unsupported target architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/jsregexp.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/jsregexp.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/jsregexp.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/jsregexp.cc 2017-12-25 17:42:57.217465617 +0100
@@ -48,6 +48,8 @@
#include "src/regexp/mips/regexp-macro-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
#else
#error Unsupported target architecture.
#endif
@@ -6760,6 +6762,9 @@
#elif V8_TARGET_ARCH_MIPS64
RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
(data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_X87
+ RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
#else
#error "Unsupported architecture"
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/OWNERS 2017-12-25 17:42:57.217465617 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.cc 2017-12-25 17:42:57.217465617 +0100
@@ -0,0 +1,1273 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
+
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - edx : Current character. Must be loaded using LoadCurrentCharacter
+ * before using any of the dispatch methods. Temporarily stores the
+ * index of capture start after a matching pass for a global regexp.
+ * - edi : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - esi : end of input (points to byte after last character in input).
+ * - ebp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - esp : Points to tip of C stack.
+ * - ecx : Points to tip of backtrack stack
+ *
+ * The registers eax and ebx are free to use for computations.
+ *
+ * Each call to a public method should retain this convention.
+ * The stack will have the following structure:
+ * - Isolate* isolate (address of the current isolate)
+ * - direct_call (if 1, direct call from JavaScript code, if 0
+ * call through the runtime system)
+ * - stack_area_base (high end of the memory area to use as
+ * backtracking stack)
+ * - capture array size (may fit multiple sets of matches)
+ * - int* capture_array (int[num_saved_registers_], for output).
+ * - end of input (address of end of string)
+ * - start of input (address of first character in string)
+ * - start index (character index of start)
+ * - String* input_string (location of a handle containing the string)
+ * --- frame alignment (if applicable) ---
+ * - return address
+ * ebp-> - old ebp
+ * - backup of caller esi
+ * - backup of caller edi
+ * - backup of caller ebx
+ * - success counter (only for global regexps to count matches).
+ * - Offset of location before start of input (effectively character
+ * string start - 1). Used to initialize capture registers to a
+ * non-position.
+ * - register 0 ebp[-4] (only positions must be stored in the first
+ * - register 1 ebp[-8] num_saved_registers_ registers)
+ * - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code, by calling the code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * int* capture_output_array,
+ * int num_capture_registers,
+ * byte* stack_area_base,
+ * bool direct_call = false,
+ * Isolate* isolate);
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
+ CodeObjectRequired::kYes)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerX87::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ add(edi, Immediate(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ add(register_location(reg), Immediate(by));
+ }
+}
+
+
+void RegExpMacroAssemblerX87::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
+ __ lea(eax, Operand(edi, -char_size()));
+ __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+ BranchOrBacktrack(equal, on_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotAtStart(int cp_offset,
+ Label* on_not_at_start) {
+ __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
+ __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
+ Label fallthrough;
+ __ cmp(edi, Operand(backtrack_stackpointer(), 0));
+ __ j(not_equal, &fallthrough);
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
+ BranchOrBacktrack(no_condition, on_equal);
+ __ bind(&fallthrough);
+}
+
+void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
+ int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
+ Label fallthrough;
+ __ mov(edx, register_location(start_reg)); // Index of start of capture
+ __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
+ __ sub(ebx, edx); // Length of capture.
+
+ // At this point, the capture registers are either both set or both cleared.
+ // If the capture length is zero, then the capture is either empty or cleared.
+ // Fall through in both cases.
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ if (read_backward) {
+ __ mov(eax, Operand(ebp, kStringStartMinusOne));
+ __ add(eax, ebx);
+ __ cmp(edi, eax);
+ BranchOrBacktrack(less_equal, on_no_match);
+ } else {
+ __ mov(eax, edi);
+ __ add(eax, ebx);
+ BranchOrBacktrack(greater, on_no_match);
+ }
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_increment;
+ // Save register contents to make the registers available below.
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ // After this, the eax, ecx, and edi registers are available.
+
+ __ add(edx, esi); // Start of capture
+ __ add(edi, esi); // Start of text to match against capture.
+ if (read_backward) {
+ __ sub(edi, ebx); // Offset by length when matching backwards.
+ }
+ __ add(ebx, edi); // End of text to match against capture.
+
+ Label loop;
+ __ bind(&loop);
+ __ movzx_b(eax, Operand(edi, 0));
+ __ cmpb_al(Operand(edx, 0));
+ __ j(equal, &loop_increment);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ or_(eax, 0x20); // Convert match character to lower-case.
+ __ lea(ecx, Operand(eax, -'a'));
+ __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
+ Label convert_capture;
+ __ j(below_equal, &convert_capture); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ sub(ecx, Immediate(224 - 'a'));
+ __ cmp(ecx, Immediate(254 - 224));
+ __ j(above, &fail); // Weren't Latin-1 letters.
+ __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
+ __ j(equal, &fail);
+ __ bind(&convert_capture);
+ // Also convert capture character.
+ __ movzx_b(ecx, Operand(edx, 0));
+ __ or_(ecx, 0x20);
+
+ __ cmp(eax, ecx);
+ __ j(not_equal, &fail);
+
+ __ bind(&loop_increment);
+ // Increment pointers into match and capture strings.
+ __ add(edx, Immediate(1));
+ __ add(edi, Immediate(1));
+ // Compare to end of match, and loop if not done.
+ __ cmp(edi, ebx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore original values before failing.
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Restore original value before continuing.
+ __ pop(backtrack_stackpointer());
+ // Drop original value of character position.
+ __ add(esp, Immediate(kPointerSize));
+ // Compute new value of character position after the matched part.
+ __ sub(edi, esi);
+ if (read_backward) {
+ // Subtract match length if we matched backward.
+ __ add(edi, register_location(start_reg));
+ __ sub(edi, register_location(start_reg + 1));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ // Save registers before calling C function.
+ __ push(esi);
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ __ push(ebx);
+
+ static const int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, ecx);
+ // Put arguments into allocated stack area, last argument highest on stack.
+ // Parameters are
+ // Address byte_offset1 - Address captured substring's start.
+ // Address byte_offset2 - Address of current character position.
+ // size_t byte_length - length of capture in bytes(!)
+// Isolate* isolate or 0 if unicode flag.
+
+ // Set isolate.
+#ifdef V8_INTL_SUPPORT
+ if (unicode) {
+ __ mov(Operand(esp, 3 * kPointerSize), Immediate(0));
+ } else // NOLINT
+#endif // V8_INTL_SUPPORT
+ {
+ __ mov(Operand(esp, 3 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ }
+ // Set byte_length.
+ __ mov(Operand(esp, 2 * kPointerSize), ebx);
+ // Set byte_offset2.
+ // Found by adding negative string-end offset of current position (edi)
+ // to end of string.
+ __ add(edi, esi);
+ if (read_backward) {
+ __ sub(edi, ebx); // Offset by length when matching backwards.
+ }
+ __ mov(Operand(esp, 1 * kPointerSize), edi);
+ // Set byte_offset1.
+ // Start of capture, where edx already holds string-end negative offset.
+ __ add(edx, esi);
+ __ mov(Operand(esp, 0 * kPointerSize), edx);
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference compare =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(compare, argument_count);
+ }
+ // Pop original values before reacting on result value.
+ __ pop(ebx);
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ __ pop(esi);
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ or_(eax, eax);
+ BranchOrBacktrack(zero, on_no_match);
+ // On success, advance position by length of capture.
+ if (read_backward) {
+ __ sub(edi, ebx);
+ } else {
+ __ add(edi, ebx);
+ }
+ }
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotBackReference(int start_reg,
+ bool read_backward,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+ Label fail;
+
+ // Find length of back-referenced capture.
+ __ mov(edx, register_location(start_reg));
+ __ mov(eax, register_location(start_reg + 1));
+ __ sub(eax, edx); // Length to check.
+
+ // At this point, the capture registers are either both set or both cleared.
+ // If the capture length is zero, then the capture is either empty or cleared.
+ // Fall through in both cases.
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ if (read_backward) {
+ __ mov(ebx, Operand(ebp, kStringStartMinusOne));
+ __ add(ebx, eax);
+ __ cmp(edi, ebx);
+ BranchOrBacktrack(less_equal, on_no_match);
+ } else {
+ __ mov(ebx, edi);
+ __ add(ebx, eax);
+ BranchOrBacktrack(greater, on_no_match);
+ }
+
+ // Save register to make it available below.
+ __ push(backtrack_stackpointer());
+
+ // Compute pointers to match string and capture string
+ __ add(edx, esi); // Start of capture.
+ __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
+ if (read_backward) {
+ __ sub(ebx, eax); // Offset by length when matching backwards.
+ }
+ __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ movzx_b(eax, Operand(edx, 0));
+ __ cmpb_al(Operand(ebx, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ movzx_w(eax, Operand(edx, 0));
+ __ cmpw_ax(Operand(ebx, 0));
+ }
+ __ j(not_equal, &fail);
+ // Increment pointers into capture and match string.
+ __ add(edx, Immediate(char_size()));
+ __ add(ebx, Immediate(char_size()));
+ // Check if we have reached end of match area.
+ __ cmp(ebx, ecx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Move current character position to position after match.
+ __ mov(edi, ecx);
+ __ sub(edi, esi);
+ if (read_backward) {
+ // Subtract match length if we matched backward.
+ __ add(edi, register_location(start_reg));
+ __ sub(edi, register_location(start_reg + 1));
+ }
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ lea(eax, Operand(current_character(), -minus));
+ if (c == 0) {
+ __ test(eax, Immediate(mask));
+ } else {
+ __ and_(eax, mask);
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ mov(eax, Immediate(table));
+ Register index = current_character();
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ mov(ebx, kTableSize - 1);
+ __ and_(ebx, current_character());
+ index = ebx;
+ }
+ __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize),
+ Immediate(0));
+ BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmp(current_character(), ' ');
+ __ j(equal, &success, Label::kNear);
+ // Check range 0x09..0x0d
+ __ lea(eax, Operand(current_character(), -'\t'));
+ __ cmp(eax, '\r' - '\t');
+ __ j(below_equal, &success, Label::kNear);
+ // \u00a0 (NBSP).
+ __ cmp(eax, 0x00a0 - '\t');
+ BranchOrBacktrack(not_equal, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(above, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(below_equal, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ BranchOrBacktrack(below_equal, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 0x2029 - 0x2028);
+ BranchOrBacktrack(below_equal, on_no_match);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ BranchOrBacktrack(above, on_no_match);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(zero, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ __ j(above, &done);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(not_zero, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ // Non-standard classes (with no syntactic shorthand) used internally.
+ case '*':
+ // Match any character.
+ return true;
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
+ // The opposite of '.'.
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(above, on_no_match);
+ } else {
+ Label done;
+ BranchOrBacktrack(below_equal, &done);
+ DCHECK_EQ(UC16, mode_);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 1);
+ BranchOrBacktrack(above, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerX87::Fail() {
+ STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
+ if (!global()) {
+ __ Move(eax, Immediate(FAILURE));
+ }
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
+ Label return_eax;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // code is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ __ push(ebp);
+ __ mov(ebp, esp);
+ // Save callee-save registers. Order here should correspond to order of
+ // kBackup_ebx etc.
+ __ push(esi);
+ __ push(edi);
+ __ push(ebx); // Callee-save on MacOS.
+ __ push(Immediate(0)); // Number of successful matches in a global regexp.
+ __ push(Immediate(0)); // Make room for "string start - 1" constant.
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(ecx, esp);
+ __ sub(ecx, Operand::StaticVariable(stack_limit));
+ // Handle it if the stack pointer is already below the stack limit.
+ __ j(below_equal, &stack_limit_hit);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ cmp(ecx, num_registers_ * kPointerSize);
+ __ j(above_equal, &stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ j(not_zero, &return_eax);
+
+ __ bind(&stack_ok);
+ // Load start index for later use.
+ __ mov(ebx, Operand(ebp, kStartIndex));
+
+ // Allocate space on stack for registers.
+ __ sub(esp, Immediate(num_registers_ * kPointerSize));
+ // Load string length.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ // Load input position.
+ __ mov(edi, Operand(ebp, kInputStart));
+ // Set up edi to be negative offset from string end.
+ __ sub(edi, esi);
+
+ // Set eax to address of char before start of the string.
+ // (effectively string position -1).
+ __ neg(ebx);
+ if (mode_ == UC16) {
+ __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
+ } else {
+ __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
+ }
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ mov(Operand(ebp, kStringStartMinusOne), eax);
+
+#if V8_OS_WIN
+ // Ensure that we write to each stack page, in order. Skipping a page
+ // on Windows can cause segmentation faults. Assuming page size is 4k.
+ const int kPageSize = 4096;
+ const int kRegistersPerPage = kPageSize / kPointerSize;
+ for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+ i < num_registers_;
+ i += kRegistersPerPage) {
+ __ mov(register_location(i), eax); // One write every page.
+ }
+#endif // V8_OS_WIN
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ __ j(not_equal, &load_char_start_regexp, Label::kNear);
+ __ mov(current_character(), '\n');
+ __ jmp(&start_regexp, Label::kNear);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1
+ // Fill in stack push order, to avoid accessing across an unwritten
+ // page (a problem on Windows).
+ if (num_saved_registers_ > 8) {
+ __ mov(ecx, kRegisterZero);
+ Label init_loop;
+ __ bind(&init_loop);
+ __ mov(Operand(ebp, ecx, times_1, 0), eax);
+ __ sub(ecx, Immediate(kPointerSize));
+ __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
+ __ j(greater, &init_loop);
+ } else { // Unroll the loop.
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(register_location(i), eax);
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ mov(ebx, Operand(ebp, kRegisterOutput));
+ __ mov(ecx, Operand(ebp, kInputEnd));
+ __ mov(edx, Operand(ebp, kStartIndex));
+ __ sub(ecx, Operand(ebp, kInputStart));
+ if (mode_ == UC16) {
+ __ lea(ecx, Operand(ecx, edx, times_2, 0));
+ } else {
+ __ add(ecx, edx);
+ }
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(eax, register_location(i));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in edx for the zero-length check later.
+ __ mov(edx, eax);
+ }
+ // Convert to index from start of string, not end.
+ __ add(eax, ecx);
+ if (mode_ == UC16) {
+ __ sar(eax, 1); // Convert byte index to character index.
+ }
+ __ mov(Operand(ebx, i * kPointerSize), eax);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ // Increment success counter.
+ __ inc(Operand(ebp, kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ mov(ecx, Operand(ebp, kNumOutputRegisters));
+ __ sub(ecx, Immediate(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmp(ecx, Immediate(num_saved_registers_));
+ __ j(less, &exit_label_);
+
+ __ mov(Operand(ebp, kNumOutputRegisters), ecx);
+ // Advance the location for output.
+ __ add(Operand(ebp, kRegisterOutput),
+ Immediate(num_saved_registers_ * kPointerSize));
+
+ // Prepare eax to initialize registers with its value in the next run.
+ __ mov(eax, Operand(ebp, kStringStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // edx: capture start index
+ __ cmp(edi, edx);
+ // Not a zero-length match, restart.
+ __ j(not_equal, &load_char_start_regexp);
+ // edi (offset from the end) is zero if we already reached the end.
+ __ test(edi, edi);
+ __ j(zero, &exit_label_, Label::kNear);
+ // Advance current position after a zero-length match.
+ Label advance;
+ __ bind(&advance);
+ if (mode_ == UC16) {
+ __ add(edi, Immediate(2));
+ } else {
+ __ inc(edi);
+ }
+ if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
+ }
+ __ jmp(&load_char_start_regexp);
+ } else {
+ __ mov(eax, Immediate(SUCCESS));
+ }
+ }
+
+ __ bind(&exit_label_);
+ if (global()) {
+ // Return the number of successful captures.
+ __ mov(eax, Operand(ebp, kSuccessfulCaptures));
+ }
+
+ __ bind(&return_eax);
+ // Skip esp past regexp registers.
+ __ lea(esp, Operand(ebp, kBackup_ebx));
+ // Restore callee-save registers.
+ __ pop(ebx);
+ __ pop(edi);
+ __ pop(esi);
+ // Exit function frame, restore previous one.
+ __ pop(ebp);
+ __ ret(0);
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ __ push(backtrack_stackpointer());
+ __ push(edi);
+
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ j(not_zero, &return_eax);
+
+ __ pop(edi);
+ __ pop(backtrack_stackpointer());
+ // String might have moved: Reload esi from frame.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+
+ Label grow_failed;
+ // Save registers before calling C function
+ __ push(esi);
+ __ push(edi);
+
+ // Call GrowStack(backtrack_stackpointer())
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, ebx);
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ __ lea(eax, Operand(ebp, kStackHighEnd));
+ __ mov(Operand(esp, 1 * kPointerSize), eax);
+ __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ or_(eax, eax);
+ __ j(equal, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), eax);
+ // Restore saved registers and continue.
+ __ pop(edi);
+ __ pop(esi);
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code =
+ isolate()->factory()->NewCode(code_desc,
+ Code::ComputeFlags(Code::REGEXP),
+ masm_->CodeObject());
+ PROFILE(masm_->isolate(),
+ RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerX87::GoTo(Label* to) {
+ BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ cmp(edi, register_location(reg));
+ BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerX87::Implementation() {
+ return kX87Implementation;
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ if (cp_offset >= 0) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ } else {
+ CheckPosition(cp_offset, on_end_of_input);
+ }
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerX87::PopCurrentPosition() {
+ Pop(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PopRegister(int register_index) {
+ Pop(eax);
+ __ mov(register_location(register_index), eax);
+}
+
+
+void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
+ Push(Immediate::CodeRelativeOffset(label));
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::PushCurrentPosition() {
+ Push(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ mov(eax, register_location(register_index));
+ Push(eax);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
+ __ mov(edi, register_location(reg));
+}
+
+
+void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
+ __ mov(backtrack_stackpointer(), register_location(reg));
+ __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+}
+
+void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ cmp(edi, -by * char_size());
+ __ j(greater_equal, &after_position, Label::kNear);
+ __ mov(edi, -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ mov(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerX87::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ mov(register_location(reg), edi);
+ } else {
+ __ lea(eax, Operand(edi, cp_offset * char_size()));
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ mov(eax, Operand(ebp, kStringStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
+ __ mov(eax, backtrack_stackpointer());
+ __ sub(eax, Operand(ebp, kStackHighEnd));
+ __ mov(register_location(reg), eax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, scratch);
+ // RegExp code frame pointer.
+ __ mov(Operand(esp, 2 * kPointerSize), ebp);
+ // Code* of self.
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
+ // Next address on the stack (will be address of return address).
+ __ lea(eax, Operand(esp, -kPointerSize));
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+ ExternalReference check_stack_guard =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ CallCFunction(check_stack_guard, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerX87::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return Operand(ebp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ if (cp_offset >= 0) {
+ __ cmp(edi, -cp_offset * char_size());
+ BranchOrBacktrack(greater_equal, on_outside_input);
+ } else {
+ __ lea(eax, Operand(edi, cp_offset * char_size()));
+ __ cmp(eax, Operand(ebp, kStringStartMinusOne));
+ BranchOrBacktrack(less_equal, on_outside_input);
+ }
+}
+
+
+void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition < 0) { // No condition
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ j(condition, &backtrack_label_);
+ return;
+ }
+ __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCall(Label* to) {
+ Label return_to;
+ __ push(Immediate::CodeRelativeOffset(&return_to));
+ __ jmp(to);
+ __ bind(&return_to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeReturn() {
+ __ pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
+ __ bind(name);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Immediate value) {
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerX87::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ mov(target, Operand(backtrack_stackpointer(), 0));
+ // Notice: This updates flags, unlike normal Pop.
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerX87::CheckPreemption() {
+ // Check for preemption.
+ Label no_preempt;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above, &no_preempt);
+
+ SafeCall(&check_preempt_label_);
+
+ __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerX87::CheckStackLimit() {
+ Label no_stack_overflow;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
+ __ j(above, &no_stack_overflow);
+
+ SafeCall(&stack_overflow_label_);
+
+ __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else if (characters == 2) {
+ __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ mov(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_w(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ }
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/regexp/x87/regexp-macro-assembler-x87.h 2017-12-25 17:42:57.218465603 +0100
@@ -0,0 +1,204 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+#define V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/x87/assembler-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerX87: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerX87();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, bool read_backward,
+ Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ bool read_backward, bool unicode,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from ebp of function parameters and stored registers.
+ static const int kFramePointer = 0;
+ // Above the frame pointer - function parameters and return address.
+ static const int kReturn_eip = kFramePointer + kPointerSize;
+ static const int kFrameAlign = kReturn_eip + kPointerSize;
+ // Parameters.
+ static const int kInputString = kFrameAlign;
+ static const int kStartIndex = kInputString + kPointerSize;
+ static const int kInputStart = kStartIndex + kPointerSize;
+ static const int kInputEnd = kInputStart + kPointerSize;
+ static const int kRegisterOutput = kInputEnd + kPointerSize;
+ // For the case of global regular expression, we have room to store at least
+ // one set of capture results. For the case of non-global regexp, we ignore
+ // this value.
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+ // Below the frame pointer - local stack variables.
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kBackup_esi = kFramePointer - kPointerSize;
+ static const int kBackup_edi = kBackup_esi - kPointerSize;
+ static const int kBackup_ebx = kBackup_edi - kPointerSize;
+ static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
+ static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ Operand register_location(int register_index);
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return edx; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return ecx; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer (ecx) by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
+ // by a word size and stores the value there.
+ inline void Push(Immediate value);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // (ecx) and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (LATIN1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/register-configuration.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/register-configuration.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/register-configuration.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/register-configuration.cc 2017-12-25 17:42:57.218465603 +0100
@@ -74,6 +74,9 @@
#if V8_TARGET_ARCH_IA32
kMaxAllocatableGeneralRegisterCount,
kMaxAllocatableDoubleRegisterCount,
+#elif V8_TARGET_ARCH_X87
+ kMaxAllocatableGeneralRegisterCount,
+ compiler == TURBOFAN ? 1 : kMaxAllocatableDoubleRegisterCount,
#elif V8_TARGET_ARCH_X64
kMaxAllocatableGeneralRegisterCount,
kMaxAllocatableDoubleRegisterCount,
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/register-configuration.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/register-configuration.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/register-configuration.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/register-configuration.h 2017-12-25 17:42:57.218465603 +0100
@@ -28,7 +28,8 @@
static const int kMaxFPRegisters = 32;
// Default RegisterConfigurations for the target architecture.
- // TODO(mstarzinger): Crankshaft is gone.
+ // TODO(X87): This distinction in RegisterConfigurations is temporary
+ // until x87 TF supports all of the registers that Crankshaft does.
static const RegisterConfiguration* Crankshaft();
static const RegisterConfiguration* Turbofan();
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/simulator.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/simulator.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/simulator.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/simulator.h 2017-12-25 17:42:57.218465603 +0100
@@ -21,6 +21,8 @@
#include "src/mips64/simulator-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/s390/simulator-s390.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/x87/simulator-x87.h"
#else
#error Unsupported target architecture.
#endif
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/strtod.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/strtod.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/strtod.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/strtod.cc 2017-12-25 17:42:57.218465603 +0100
@@ -154,7 +154,8 @@
static bool DoubleStrtod(Vector<const char> trimmed,
int exponent,
double* result) {
-#if (V8_TARGET_ARCH_IA32 || defined(USE_SIMULATOR)) && !defined(_MSC_VER)
+#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
+ !defined(_MSC_VER)
// On x86 the floating-point stack can be 64 or 80 bits wide. If it is
// 80 bits wide (as is the case on Linux) then double-rounding occurs and the
// result is not accurate.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/utils.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/utils.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/utils.cc 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/utils.cc 2017-12-25 17:42:57.218465603 +0100
@@ -356,7 +356,8 @@
}
}
-#if V8_TARGET_ARCH_IA32
+
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
static void MemMoveWrapper(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
@@ -410,7 +411,7 @@
void init_memcopy_functions(Isolate* isolate) {
if (g_memcopy_functions_initialized) return;
g_memcopy_functions_initialized = true;
-#if V8_TARGET_ARCH_IA32
+#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
MemMoveFunction generated_memmove = CreateMemMoveFunction(isolate);
if (generated_memmove != NULL) {
memmove_function = generated_memmove;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/utils.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/utils.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/utils.h 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/utils.h 2017-12-25 17:42:57.218465603 +0100
@@ -431,7 +431,7 @@
// Initializes the codegen support that depends on CPU features.
void init_memcopy_functions(Isolate* isolate);
-#if defined(V8_TARGET_ARCH_IA32)
+#if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X87)
// Limit below which the extra overhead of the MemCopy function is likely
// to outweigh the benefits of faster copying.
const int kMinComplexMemCopy = 64;
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/v8.gyp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/v8.gyp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/v8.gyp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/v8.gyp 2017-12-25 17:42:57.218465603 +0100
@@ -279,6 +279,11 @@
'builtins/s390/builtins-s390.cc',
],
}],
+ ['v8_target_arch=="x87"', {
+ 'sources': [ ### gcmole(arch:x87) ###
+ 'builtins/x87/builtins-x87.cc',
+ ],
+ }],
['v8_enable_i18n_support==0', {
'sources!': [
'builtins/builtins-intl-gen.cc',
@@ -1587,6 +1592,38 @@
'regexp/ia32/regexp-macro-assembler-ia32.h',
],
}],
+ ['v8_target_arch=="x87"', {
+ 'sources': [ ### gcmole(arch:x87) ###
+ 'x87/assembler-x87-inl.h',
+ 'x87/assembler-x87.cc',
+ 'x87/assembler-x87.h',
+ 'x87/code-stubs-x87.cc',
+ 'x87/code-stubs-x87.h',
+ 'x87/codegen-x87.cc',
+ 'x87/codegen-x87.h',
+ 'x87/cpu-x87.cc',
+ 'x87/deoptimizer-x87.cc',
+ 'x87/disasm-x87.cc',
+ 'x87/frames-x87.cc',
+ 'x87/frames-x87.h',
+ 'x87/interface-descriptors-x87.cc',
+ 'x87/macro-assembler-x87.cc',
+ 'x87/macro-assembler-x87.h',
+ 'x87/simulator-x87.cc',
+ 'x87/simulator-x87.h',
+ 'compiler/x87/code-generator-x87.cc',
+ 'compiler/x87/instruction-codes-x87.h',
+ 'compiler/x87/instruction-scheduler-x87.cc',
+ 'compiler/x87/instruction-selector-x87.cc',
+ 'debug/x87/debug-x87.cc',
+ 'full-codegen/x87/full-codegen-x87.cc',
+ 'ic/x87/access-compiler-x87.cc',
+ 'ic/x87/handler-compiler-x87.cc',
+ 'ic/x87/ic-x87.cc',
+ 'regexp/x87/regexp-macro-assembler-x87.cc',
+ 'regexp/x87/regexp-macro-assembler-x87.h',
+ ],
+ }],
['v8_target_arch=="mips" or v8_target_arch=="mipsel"', {
'sources': [ ### gcmole(arch:mipsel) ###
'mips/assembler-mips.cc',
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87.cc 2017-12-28 01:58:14.302045167 +0100
@@ -0,0 +1,2256 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been modified
+// significantly by Google Inc.
+// Copyright 2012 the V8 project authors. All rights reserved.
+
+#include "src/x87/assembler-x87.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/base/bits.h"
+#include "src/base/cpu.h"
+#include "src/code-stubs.h"
+#include "src/disassembler.h"
+#include "src/macro-assembler.h"
+#include "src/v8.h"
+
+namespace v8 {
+namespace internal {
+
+Immediate Immediate::EmbeddedNumber(double value) {
+ int32_t smi;
+ if (DoubleToSmiInteger(value, &smi)) return Immediate(Smi::FromInt(smi));
+ Immediate result(0, RelocInfo::EMBEDDED_OBJECT);
+ result.is_heap_object_request_ = true;
+ result.value_.heap_object_request = HeapObjectRequest(value);
+ return result;
+}
+
+Immediate Immediate::EmbeddedCode(CodeStub* stub) {
+ Immediate result(0, RelocInfo::CODE_TARGET);
+ result.is_heap_object_request_ = true;
+ result.value_.heap_object_request = HeapObjectRequest(stub);
+ return result;
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of CpuFeatures
+
+void CpuFeatures::ProbeImpl(bool cross_compile) {
+ base::CPU cpu;
+
+ // Only use statically determined features for cross compile (snapshot).
+ if (cross_compile) return;
+}
+
+
+void CpuFeatures::PrintTarget() { }
+void CpuFeatures::PrintFeatures() { }
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Displacement
+
+void Displacement::init(Label* L, Type type) {
+ DCHECK(!L->is_bound());
+ int next = 0;
+ if (L->is_linked()) {
+ next = L->pos();
+ DCHECK(next > 0); // Displacements must be at positions > 0
+ }
+ // Ensure that we _never_ overflow the next field.
+ DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
+ data_ = NextField::encode(next) | TypeField::encode(type);
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+
+const int RelocInfo::kApplyMask =
+ RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
+ 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
+ RelocInfo::kDebugBreakSlotMask;
+
+
+bool RelocInfo::IsCodedSpecially() {
+ // The deserializer needs to know whether a pointer is specially coded. Being
+ // specially coded on IA32 means that it is a relative address, as used by
+ // branch instructions. These are also the ones that need changing when a
+ // code object moves.
+ return (1 << rmode_) & kApplyMask;
+}
+
+
+bool RelocInfo::IsInConstantPool() {
+ return false;
+}
+
+Address RelocInfo::wasm_memory_reference() {
+ DCHECK(IsWasmMemoryReference(rmode_));
+ return Memory::Address_at(pc_);
+}
+
+Address RelocInfo::wasm_global_reference() {
+ DCHECK(IsWasmGlobalReference(rmode_));
+ return Memory::Address_at(pc_);
+}
+
+uint32_t RelocInfo::wasm_memory_size_reference() {
+ DCHECK(IsWasmMemorySizeReference(rmode_));
+ return Memory::uint32_at(pc_);
+}
+
+uint32_t RelocInfo::wasm_function_table_size_reference() {
+ DCHECK(IsWasmFunctionTableSizeReference(rmode_));
+ return Memory::uint32_at(pc_);
+}
+
+void RelocInfo::unchecked_update_wasm_memory_reference(
+ Isolate* isolate, Address address, ICacheFlushMode icache_flush_mode) {
+ Memory::Address_at(pc_) = address;
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ Assembler::FlushICache(isolate, pc_, sizeof(Address));
+ }
+}
+
+void RelocInfo::unchecked_update_wasm_size(Isolate* isolate, uint32_t size,
+ ICacheFlushMode icache_flush_mode) {
+ Memory::uint32_at(pc_) = size;
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ Assembler::FlushICache(isolate, pc_, sizeof(uint32_t));
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand
+
+Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
+ // [base + disp/r]
+ if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
+ // [base]
+ set_modrm(0, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
+ // [base + disp8]
+ set_modrm(1, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ set_disp8(disp);
+ } else {
+ // [base + disp/r]
+ set_modrm(2, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ set_dispr(disp, rmode);
+ }
+}
+
+
+Operand::Operand(Register base,
+ Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode) {
+ DCHECK(!index.is(esp)); // illegal addressing mode
+ // [base + index*scale + disp/r]
+ if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
+ // [base + index*scale]
+ set_modrm(0, esp);
+ set_sib(scale, index, base);
+ } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
+ // [base + index*scale + disp8]
+ set_modrm(1, esp);
+ set_sib(scale, index, base);
+ set_disp8(disp);
+ } else {
+ // [base + index*scale + disp/r]
+ set_modrm(2, esp);
+ set_sib(scale, index, base);
+ set_dispr(disp, rmode);
+ }
+}
+
+
+Operand::Operand(Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode) {
+ DCHECK(!index.is(esp)); // illegal addressing mode
+ // [index*scale + disp/r]
+ set_modrm(0, esp);
+ set_sib(scale, index, ebp);
+ set_dispr(disp, rmode);
+}
+
+
+bool Operand::is_reg(Register reg) const {
+ return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
+ && ((buf_[0] & 0x07) == reg.code()); // register codes match.
+}
+
+
+bool Operand::is_reg_only() const {
+ return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
+}
+
+
+Register Operand::reg() const {
+ DCHECK(is_reg_only());
+ return Register::from_code(buf_[0] & 0x07);
+}
+
+void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
+ for (auto& request : heap_object_requests_) {
+ Handle<HeapObject> object;
+ switch (request.kind()) {
+ case HeapObjectRequest::kHeapNumber:
+ object = isolate->factory()->NewHeapNumber(request.heap_number(),
+ IMMUTABLE, TENURED);
+ break;
+ case HeapObjectRequest::kCodeStub:
+ request.code_stub()->set_isolate(isolate);
+ object = request.code_stub()->GetCode();
+ break;
+ }
+ Address pc = buffer_ + request.offset();
+ Memory::Object_Handle_at(pc) = object;
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Assembler.
+
+// Emit a single byte. Must always be inlined.
+#define EMIT(x) \
+ *pc_++ = (x)
+
+Assembler::Assembler(IsolateData isolate_data, void* buffer, int buffer_size)
+ : AssemblerBase(isolate_data, buffer, buffer_size) {
+// Clear the buffer in debug mode unless it was provided by the
+// caller in which case we can't be sure it's okay to overwrite
+// existing code in it; see CodePatcher::CodePatcher(...).
+#ifdef DEBUG
+ if (own_buffer_) {
+ memset(buffer_, 0xCC, buffer_size_); // int3
+ }
+#endif
+
+ reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
+}
+
+
+void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
+ // Finalize code (at this point overflow() may be true, but the gap ensures
+ // that we are still not overlapping instructions and relocation info).
+ DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
+
+ AllocateAndInstallRequestedHeapObjects(isolate);
+
+ // Set up code descriptor.
+ desc->buffer = buffer_;
+ desc->buffer_size = buffer_size_;
+ desc->instr_size = pc_offset();
+ desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+ desc->origin = this;
+ desc->constant_pool_size = 0;
+ desc->unwinding_info_size = 0;
+ desc->unwinding_info = nullptr;
+}
+
+
+void Assembler::Align(int m) {
+ DCHECK(base::bits::IsPowerOfTwo(m));
+ int mask = m - 1;
+ int addr = pc_offset();
+ Nop((m - (addr & mask)) & mask);
+}
+
+
+bool Assembler::IsNop(Address addr) {
+ Address a = addr;
+ while (*a == 0x66) a++;
+ if (*a == 0x90) return true;
+ if (a[0] == 0xf && a[1] == 0x1f) return true;
+ return false;
+}
+
+
+void Assembler::Nop(int bytes) {
+ EnsureSpace ensure_space(this);
+
+ // Older CPUs that do not support SSE2 may not support multibyte NOP
+ // instructions.
+ for (; bytes > 0; bytes--) {
+ EMIT(0x90);
+ }
+ return;
+}
+
+
+void Assembler::CodeTargetAlign() {
+ Align(16); // Preferred alignment of jump targets on ia32.
+}
+
+
+void Assembler::cpuid() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xA2);
+}
+
+
+void Assembler::pushad() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x60);
+}
+
+
+void Assembler::popad() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x61);
+}
+
+
+void Assembler::pushfd() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x9C);
+}
+
+
+void Assembler::popfd() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x9D);
+}
+
+
+void Assembler::push(const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ if (x.is_int8()) {
+ EMIT(0x6a);
+ EMIT(x.immediate());
+ } else {
+ EMIT(0x68);
+ emit(x);
+ }
+}
+
+
+void Assembler::push_imm32(int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x68);
+ emit(imm32);
+}
+
+
+void Assembler::push(Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x50 | src.code());
+}
+
+
+void Assembler::push(const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFF);
+ emit_operand(esi, src);
+}
+
+
+void Assembler::pop(Register dst) {
+ DCHECK(reloc_info_writer.last_pc() != NULL);
+ EnsureSpace ensure_space(this);
+ EMIT(0x58 | dst.code());
+}
+
+
+void Assembler::pop(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x8F);
+ emit_operand(eax, dst);
+}
+
+
+void Assembler::enter(const Immediate& size) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC8);
+ emit_w(size);
+ EMIT(0);
+}
+
+
+void Assembler::leave() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC9);
+}
+
+
+void Assembler::mov_b(Register dst, const Operand& src) {
+ CHECK(dst.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x8A);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov_b(const Operand& dst, const Immediate& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC6);
+ emit_operand(eax, dst);
+ EMIT(static_cast<int8_t>(src.immediate()));
+}
+
+
+void Assembler::mov_b(const Operand& dst, int8_t imm8) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC6);
+ emit_operand(eax, dst);
+ EMIT(imm8);
+}
+
+
+void Assembler::mov_b(const Operand& dst, Register src) {
+ CHECK(src.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x88);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::mov_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x8B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov_w(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x89);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::mov_w(const Operand& dst, int16_t imm16) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ EMIT(static_cast<int8_t>(imm16 & 0xff));
+ EMIT(static_cast<int8_t>(imm16 >> 8));
+}
+
+
+void Assembler::mov_w(const Operand& dst, const Immediate& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ EMIT(static_cast<int8_t>(src.immediate() & 0xff));
+ EMIT(static_cast<int8_t>(src.immediate() >> 8));
+}
+
+
+void Assembler::mov(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xB8 | dst.code());
+ emit(imm32);
+}
+
+
+void Assembler::mov(Register dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xB8 | dst.code());
+ emit(x);
+}
+
+
+void Assembler::mov(Register dst, Handle<HeapObject> handle) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xB8 | dst.code());
+ emit(handle);
+}
+
+
+void Assembler::mov(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x8B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov(Register dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x89);
+ EMIT(0xC0 | src.code() << 3 | dst.code());
+}
+
+
+void Assembler::mov(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ emit(x);
+}
+
+
+void Assembler::mov(const Operand& dst, Handle<HeapObject> handle) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ emit(handle);
+}
+
+
+void Assembler::mov(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x89);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::movsx_b(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xBE);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movsx_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xBF);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movzx_b(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xB6);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movzx_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xB7);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::cld() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFC);
+}
+
+
+void Assembler::rep_movs() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF3);
+ EMIT(0xA5);
+}
+
+
+void Assembler::rep_stos() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF3);
+ EMIT(0xAB);
+}
+
+
+void Assembler::stos() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xAB);
+}
+
+
+void Assembler::xchg(Register dst, Register src) {
+ EnsureSpace ensure_space(this);
+ if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
+ EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
+ } else {
+ EMIT(0x87);
+ EMIT(0xC0 | src.code() << 3 | dst.code());
+ }
+}
+
+
+void Assembler::xchg(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x87);
+ emit_operand(dst, src);
+}
+
+void Assembler::xchg_b(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x86);
+ emit_operand(reg, op);
+}
+
+void Assembler::xchg_w(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x87);
+ emit_operand(reg, op);
+}
+
+void Assembler::lock() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF0);
+}
+
+void Assembler::cmpxchg(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xB1);
+ emit_operand(src, dst);
+}
+
+void Assembler::cmpxchg_b(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xB0);
+ emit_operand(src, dst);
+}
+
+void Assembler::cmpxchg_w(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x0F);
+ EMIT(0xB1);
+ emit_operand(src, dst);
+}
+
+void Assembler::adc(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ emit_arith(2, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::adc(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x13);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::add(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x03);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::add(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x01);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::add(const Operand& dst, const Immediate& x) {
+ DCHECK(reloc_info_writer.last_pc() != NULL);
+ EnsureSpace ensure_space(this);
+ emit_arith(0, dst, x);
+}
+
+
+void Assembler::and_(Register dst, int32_t imm32) {
+ and_(dst, Immediate(imm32));
+}
+
+
+void Assembler::and_(Register dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ emit_arith(4, Operand(dst), x);
+}
+
+
+void Assembler::and_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x23);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::and_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ emit_arith(4, dst, x);
+}
+
+
+void Assembler::and_(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x21);
+ emit_operand(src, dst);
+}
+
+void Assembler::cmpb(const Operand& op, Immediate imm8) {
+ DCHECK(imm8.is_int8() || imm8.is_uint8());
+ EnsureSpace ensure_space(this);
+ if (op.is_reg(eax)) {
+ EMIT(0x3C);
+ } else {
+ EMIT(0x80);
+ emit_operand(edi, op); // edi == 7
+ }
+ emit_b(imm8);
+}
+
+
+void Assembler::cmpb(const Operand& op, Register reg) {
+ CHECK(reg.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x38);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::cmpb(Register reg, const Operand& op) {
+ CHECK(reg.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x3A);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::cmpw(const Operand& op, Immediate imm16) {
+ DCHECK(imm16.is_int16());
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x81);
+ emit_operand(edi, op);
+ emit_w(imm16);
+}
+
+void Assembler::cmpw(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x3B);
+ emit_operand(reg, op);
+}
+
+void Assembler::cmpw(const Operand& op, Register reg) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x39);
+ emit_operand(reg, op);
+}
+
+void Assembler::cmp(Register reg, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ emit_arith(7, Operand(reg), Immediate(imm32));
+}
+
+
+void Assembler::cmp(Register reg, Handle<HeapObject> handle) {
+ EnsureSpace ensure_space(this);
+ emit_arith(7, Operand(reg), Immediate(handle));
+}
+
+
+void Assembler::cmp(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x3B);
+ emit_operand(reg, op);
+}
+
+void Assembler::cmp(const Operand& op, Register reg) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x39);
+ emit_operand(reg, op);
+}
+
+void Assembler::cmp(const Operand& op, const Immediate& imm) {
+ EnsureSpace ensure_space(this);
+ emit_arith(7, op, imm);
+}
+
+
+void Assembler::cmp(const Operand& op, Handle<HeapObject> handle) {
+ EnsureSpace ensure_space(this);
+ emit_arith(7, op, Immediate(handle));
+}
+
+
+void Assembler::cmpb_al(const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x38); // CMP r/m8, r8
+ emit_operand(eax, op); // eax has same code as register al.
+}
+
+
+void Assembler::cmpw_ax(const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x39); // CMP r/m16, r16
+ emit_operand(eax, op); // eax has same code as register ax.
+}
+
+
+void Assembler::dec_b(Register dst) {
+ CHECK(dst.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0xFE);
+ EMIT(0xC8 | dst.code());
+}
+
+
+void Assembler::dec_b(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFE);
+ emit_operand(ecx, dst);
+}
+
+
+void Assembler::dec(Register dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x48 | dst.code());
+}
+
+
+void Assembler::dec(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFF);
+ emit_operand(ecx, dst);
+}
+
+
+void Assembler::cdq() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x99);
+}
+
+
+void Assembler::idiv(const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ emit_operand(edi, src);
+}
+
+
+void Assembler::div(const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ emit_operand(esi, src);
+}
+
+
+void Assembler::imul(Register reg) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ EMIT(0xE8 | reg.code());
+}
+
+
+void Assembler::imul(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xAF);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::imul(Register dst, Register src, int32_t imm32) {
+ imul(dst, Operand(src), imm32);
+}
+
+
+void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ if (is_int8(imm32)) {
+ EMIT(0x6B);
+ emit_operand(dst, src);
+ EMIT(imm32);
+ } else {
+ EMIT(0x69);
+ emit_operand(dst, src);
+ emit(imm32);
+ }
+}
+
+
+void Assembler::inc(Register dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x40 | dst.code());
+}
+
+
+void Assembler::inc(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFF);
+ emit_operand(eax, dst);
+}
+
+
+void Assembler::lea(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x8D);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mul(Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ EMIT(0xE0 | src.code());
+}
+
+
+void Assembler::neg(Register dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ EMIT(0xD8 | dst.code());
+}
+
+
+void Assembler::neg(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ emit_operand(ebx, dst);
+}
+
+
+void Assembler::not_(Register dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ EMIT(0xD0 | dst.code());
+}
+
+
+void Assembler::not_(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ emit_operand(edx, dst);
+}
+
+
+void Assembler::or_(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ emit_arith(1, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::or_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::or_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ emit_arith(1, dst, x);
+}
+
+
+void Assembler::or_(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x09);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::rcl(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ EMIT(0xD0 | dst.code());
+ } else {
+ EMIT(0xC1);
+ EMIT(0xD0 | dst.code());
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::rcr(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ EMIT(0xD8 | dst.code());
+ } else {
+ EMIT(0xC1);
+ EMIT(0xD8 | dst.code());
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::ror(const Operand& dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ emit_operand(ecx, dst);
+ } else {
+ EMIT(0xC1);
+ emit_operand(ecx, dst);
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::ror_cl(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD3);
+ emit_operand(ecx, dst);
+}
+
+
+void Assembler::sar(const Operand& dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ emit_operand(edi, dst);
+ } else {
+ EMIT(0xC1);
+ emit_operand(edi, dst);
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::sar_cl(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD3);
+ emit_operand(edi, dst);
+}
+
+void Assembler::sbb(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x1B);
+ emit_operand(dst, src);
+}
+
+void Assembler::shld(Register dst, Register src, uint8_t shift) {
+ DCHECK(is_uint5(shift));
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xA4);
+ emit_operand(src, Operand(dst));
+ EMIT(shift);
+}
+
+void Assembler::shld_cl(Register dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xA5);
+ emit_operand(src, Operand(dst));
+}
+
+
+void Assembler::shl(const Operand& dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ emit_operand(esp, dst);
+ } else {
+ EMIT(0xC1);
+ emit_operand(esp, dst);
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::shl_cl(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD3);
+ emit_operand(esp, dst);
+}
+
+void Assembler::shr(const Operand& dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ emit_operand(ebp, dst);
+ } else {
+ EMIT(0xC1);
+ emit_operand(ebp, dst);
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::shr_cl(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD3);
+ emit_operand(ebp, dst);
+}
+
+void Assembler::shrd(Register dst, Register src, uint8_t shift) {
+ DCHECK(is_uint5(shift));
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xAC);
+ emit_operand(dst, Operand(src));
+ EMIT(shift);
+}
+
+void Assembler::shrd_cl(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xAD);
+ emit_operand(src, dst);
+}
+
+void Assembler::sub(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ emit_arith(5, dst, x);
+}
+
+
+void Assembler::sub(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x2B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::sub(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x29);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::test(Register reg, const Immediate& imm) {
+ if (imm.is_uint8()) {
+ test_b(reg, imm);
+ return;
+ }
+
+ EnsureSpace ensure_space(this);
+ // This is not using emit_arith because test doesn't support
+ // sign-extension of 8-bit operands.
+ if (reg.is(eax)) {
+ EMIT(0xA9);
+ } else {
+ EMIT(0xF7);
+ EMIT(0xC0 | reg.code());
+ }
+ emit(imm);
+}
+
+
+void Assembler::test(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x85);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::test_b(Register reg, const Operand& op) {
+ CHECK(reg.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x84);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::test(const Operand& op, const Immediate& imm) {
+ if (op.is_reg_only()) {
+ test(op.reg(), imm);
+ return;
+ }
+ if (imm.is_uint8()) {
+ return test_b(op, imm);
+ }
+ EnsureSpace ensure_space(this);
+ EMIT(0xF7);
+ emit_operand(eax, op);
+ emit(imm);
+}
+
+void Assembler::test_b(Register reg, Immediate imm8) {
+ DCHECK(imm8.is_uint8());
+ EnsureSpace ensure_space(this);
+ // Only use test against byte for registers that have a byte
+ // variant: eax, ebx, ecx, and edx.
+ if (reg.is(eax)) {
+ EMIT(0xA8);
+ emit_b(imm8);
+ } else if (reg.is_byte_register()) {
+ emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.immediate()));
+ } else {
+ EMIT(0x66);
+ EMIT(0xF7);
+ EMIT(0xC0 | reg.code());
+ emit_w(imm8);
+ }
+}
+
+void Assembler::test_b(const Operand& op, Immediate imm8) {
+ if (op.is_reg_only()) {
+ test_b(op.reg(), imm8);
+ return;
+ }
+ EnsureSpace ensure_space(this);
+ EMIT(0xF6);
+ emit_operand(eax, op);
+ emit_b(imm8);
+}
+
+void Assembler::test_w(Register reg, Immediate imm16) {
+ DCHECK(imm16.is_int16() || imm16.is_uint16());
+ EnsureSpace ensure_space(this);
+ if (reg.is(eax)) {
+ EMIT(0xA9);
+ emit_w(imm16);
+ } else {
+ EMIT(0x66);
+ EMIT(0xF7);
+ EMIT(0xc0 | reg.code());
+ emit_w(imm16);
+ }
+}
+
+void Assembler::test_w(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0x85);
+ emit_operand(reg, op);
+}
+
+void Assembler::test_w(const Operand& op, Immediate imm16) {
+ DCHECK(imm16.is_int16() || imm16.is_uint16());
+ if (op.is_reg_only()) {
+ test_w(op.reg(), imm16);
+ return;
+ }
+ EnsureSpace ensure_space(this);
+ EMIT(0x66);
+ EMIT(0xF7);
+ emit_operand(eax, op);
+ emit_w(imm16);
+}
+
+void Assembler::xor_(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ emit_arith(6, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::xor_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x33);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::xor_(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x31);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::xor_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ emit_arith(6, dst, x);
+}
+
+
+void Assembler::bt(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xA3);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::bts(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xAB);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::bsr(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xBD);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::bsf(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0xBC);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::hlt() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xF4);
+}
+
+
+void Assembler::int3() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xCC);
+}
+
+
+void Assembler::nop() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x90);
+}
+
+
+void Assembler::ret(int imm16) {
+ EnsureSpace ensure_space(this);
+ DCHECK(is_uint16(imm16));
+ if (imm16 == 0) {
+ EMIT(0xC3);
+ } else {
+ EMIT(0xC2);
+ EMIT(imm16 & 0xFF);
+ EMIT((imm16 >> 8) & 0xFF);
+ }
+}
+
+
+void Assembler::ud2() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0x0B);
+}
+
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the 32bit
+// Displacement of the last instruction using the label.
+
+
+void Assembler::print(Label* L) {
+ if (L->is_unused()) {
+ PrintF("unused label\n");
+ } else if (L->is_bound()) {
+ PrintF("bound label to %d\n", L->pos());
+ } else if (L->is_linked()) {
+ Label l = *L;
+ PrintF("unbound label");
+ while (l.is_linked()) {
+ Displacement disp = disp_at(&l);
+ PrintF("@ %d ", l.pos());
+ disp.print();
+ PrintF("\n");
+ disp.next(&l);
+ }
+ } else {
+ PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
+ }
+}
+
+
+void Assembler::bind_to(Label* L, int pos) {
+ EnsureSpace ensure_space(this);
+ DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
+ while (L->is_linked()) {
+ Displacement disp = disp_at(L);
+ int fixup_pos = L->pos();
+ if (disp.type() == Displacement::CODE_ABSOLUTE) {
+ long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
+ internal_reference_positions_.push_back(fixup_pos);
+ } else if (disp.type() == Displacement::CODE_RELATIVE) {
+ // Relative to Code* heap object pointer.
+ long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
+ } else {
+ if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
+ DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
+ }
+ // Relative address, relative to point after address.
+ int imm32 = pos - (fixup_pos + sizeof(int32_t));
+ long_at_put(fixup_pos, imm32);
+ }
+ disp.next(L);
+ }
+ while (L->is_near_linked()) {
+ int fixup_pos = L->near_link_pos();
+ int offset_to_next =
+ static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
+ DCHECK(offset_to_next <= 0);
+ // Relative address, relative to point after address.
+ int disp = pos - fixup_pos - sizeof(int8_t);
+ CHECK(0 <= disp && disp <= 127);
+ set_byte_at(fixup_pos, disp);
+ if (offset_to_next < 0) {
+ L->link_to(fixup_pos + offset_to_next, Label::kNear);
+ } else {
+ L->UnuseNear();
+ }
+ }
+ L->bind_to(pos);
+}
+
+
+void Assembler::bind(Label* L) {
+ EnsureSpace ensure_space(this);
+ DCHECK(!L->is_bound()); // label can only be bound once
+ bind_to(L, pc_offset());
+}
+
+
+void Assembler::call(Label* L) {
+ EnsureSpace ensure_space(this);
+ if (L->is_bound()) {
+ const int long_size = 5;
+ int offs = L->pos() - pc_offset();
+ DCHECK(offs <= 0);
+ // 1110 1000 #32-bit disp.
+ EMIT(0xE8);
+ emit(offs - long_size);
+ } else {
+ // 1110 1000 #32-bit disp.
+ EMIT(0xE8);
+ emit_disp(L, Displacement::OTHER);
+ }
+}
+
+
+void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE8);
+ if (RelocInfo::IsRuntimeEntry(rmode)) {
+ emit(reinterpret_cast<uint32_t>(entry), rmode);
+ } else {
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+ }
+}
+
+
+int Assembler::CallSize(const Operand& adr) {
+ // Call size is 1 (opcode) + adr.len_ (operand).
+ return 1 + adr.len_;
+}
+
+
+void Assembler::call(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFF);
+ emit_operand(edx, adr);
+}
+
+
+int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
+ return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
+}
+
+
+void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ DCHECK(RelocInfo::IsCodeTarget(rmode)
+ || rmode == RelocInfo::CODE_AGE_SEQUENCE);
+ EMIT(0xE8);
+ emit(code, rmode);
+}
+
+void Assembler::call(CodeStub* stub) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xE8);
+ emit(Immediate::EmbeddedCode(stub));
+}
+
+void Assembler::jmp(Label* L, Label::Distance distance) {
+ EnsureSpace ensure_space(this);
+ if (L->is_bound()) {
+ const int short_size = 2;
+ const int long_size = 5;
+ int offs = L->pos() - pc_offset();
+ DCHECK(offs <= 0);
+ if (is_int8(offs - short_size)) {
+ // 1110 1011 #8-bit disp.
+ EMIT(0xEB);
+ EMIT((offs - short_size) & 0xFF);
+ } else {
+ // 1110 1001 #32-bit disp.
+ EMIT(0xE9);
+ emit(offs - long_size);
+ }
+ } else if (distance == Label::kNear) {
+ EMIT(0xEB);
+ emit_near_disp(L);
+ } else {
+ // 1110 1001 #32-bit disp.
+ EMIT(0xE9);
+ emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
+ }
+}
+
+
+void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE9);
+ if (RelocInfo::IsRuntimeEntry(rmode)) {
+ emit(reinterpret_cast<uint32_t>(entry), rmode);
+ } else {
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+ }
+}
+
+
+void Assembler::jmp(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xFF);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE9);
+ emit(code, rmode);
+}
+
+
+void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
+ EnsureSpace ensure_space(this);
+ DCHECK(0 <= cc && static_cast<int>(cc) < 16);
+ if (L->is_bound()) {
+ const int short_size = 2;
+ const int long_size = 6;
+ int offs = L->pos() - pc_offset();
+ DCHECK(offs <= 0);
+ if (is_int8(offs - short_size)) {
+ // 0111 tttn #8-bit disp
+ EMIT(0x70 | cc);
+ EMIT((offs - short_size) & 0xFF);
+ } else {
+ // 0000 1111 1000 tttn #32-bit disp
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit(offs - long_size);
+ }
+ } else if (distance == Label::kNear) {
+ EMIT(0x70 | cc);
+ emit_near_disp(L);
+ } else {
+ // 0000 1111 1000 tttn #32-bit disp
+ // Note: could eliminate cond. jumps to this jump if condition
+ // is the same however, seems to be rather unlikely case.
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit_disp(L, Displacement::OTHER);
+ }
+}
+
+
+void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
+ // 0000 1111 1000 tttn #32-bit disp.
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ if (RelocInfo::IsRuntimeEntry(rmode)) {
+ emit(reinterpret_cast<uint32_t>(entry), rmode);
+ } else {
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+ }
+}
+
+
+void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ // 0000 1111 1000 tttn #32-bit disp
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit(code, rmode);
+}
+
+
+// FPU instructions.
+
+void Assembler::fld(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD9, 0xC0, i);
+}
+
+
+void Assembler::fstp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDD, 0xD8, i);
+}
+
+
+void Assembler::fld1() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xE8);
+}
+
+
+void Assembler::fldpi() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xEB);
+}
+
+
+void Assembler::fldz() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xEE);
+}
+
+
+void Assembler::fldln2() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xED);
+}
+
+
+void Assembler::fld_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fld_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fstp_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fst_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ emit_operand(edx, adr);
+}
+
+
+void Assembler::fldcw(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ emit_operand(ebp, adr);
+}
+
+
+void Assembler::fnstcw(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ emit_operand(edi, adr);
+}
+
+
+void Assembler::fstp_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fst_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(edx, adr);
+}
+
+
+void Assembler::fild_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fild_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDF);
+ emit_operand(ebp, adr);
+}
+
+
+void Assembler::fistp_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fisttp_s(const Operand& adr) {
+ DCHECK(IsEnabled(SSE3));
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ emit_operand(ecx, adr);
+}
+
+
+void Assembler::fisttp_d(const Operand& adr) {
+ DCHECK(IsEnabled(SSE3));
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(ecx, adr);
+}
+
+
+void Assembler::fist_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ emit_operand(edx, adr);
+}
+
+
+void Assembler::fistp_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDF);
+ emit_operand(edi, adr);
+}
+
+
+void Assembler::fabs() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xE1);
+}
+
+
+void Assembler::fchs() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xE0);
+}
+
+
+void Assembler::fsqrt() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xFA);
+}
+
+
+void Assembler::fcos() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xFF);
+}
+
+
+void Assembler::fsin() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xFE);
+}
+
+
+void Assembler::fptan() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF2);
+}
+
+
+void Assembler::fyl2x() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF1);
+}
+
+
+void Assembler::f2xm1() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF0);
+}
+
+
+void Assembler::fscale() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xFD);
+}
+
+
+void Assembler::fninit() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ EMIT(0xE3);
+}
+
+
+void Assembler::fadd(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDC, 0xC0, i);
+}
+
+
+void Assembler::fadd_i(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD8, 0xC0, i);
+}
+
+
+void Assembler::fadd_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fsub(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDC, 0xE8, i);
+}
+
+
+void Assembler::fsub_i(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD8, 0xE0, i);
+}
+
+
+void Assembler::fsubr_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(ebp, adr);
+}
+
+
+void Assembler::fsub_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::fisub_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDA);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::fmul_i(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD8, 0xC8, i);
+}
+
+
+void Assembler::fmul(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDC, 0xC8, i);
+}
+
+
+void Assembler::fmul_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(ecx, adr);
+}
+
+
+void Assembler::fdiv(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDC, 0xF8, i);
+}
+
+
+void Assembler::fdiv_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(esi, adr);
+}
+
+
+void Assembler::fdivr_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDC);
+ emit_operand(edi, adr);
+}
+
+
+void Assembler::fdiv_i(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD8, 0xF0, i);
+}
+
+
+void Assembler::faddp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDE, 0xC0, i);
+}
+
+
+void Assembler::fsubp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDE, 0xE8, i);
+}
+
+
+void Assembler::fsubrp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDE, 0xE0, i);
+}
+
+
+void Assembler::fmulp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDE, 0xC8, i);
+}
+
+
+void Assembler::fdivp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDE, 0xF8, i);
+}
+
+
+void Assembler::fprem() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF8);
+}
+
+
+void Assembler::fprem1() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF5);
+}
+
+
+void Assembler::fxch(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xD9, 0xC8, i);
+}
+
+
+void Assembler::fincstp() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xF7);
+}
+
+
+void Assembler::ffree(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDD, 0xC0, i);
+}
+
+
+void Assembler::ftst() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xE4);
+}
+
+
+void Assembler::fxam() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xE5);
+}
+
+
+void Assembler::fucomp(int i) {
+ EnsureSpace ensure_space(this);
+ emit_farith(0xDD, 0xE8, i);
+}
+
+
+void Assembler::fucompp() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDA);
+ EMIT(0xE9);
+}
+
+
+void Assembler::fucomi(int i) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ EMIT(0xE8 + i);
+}
+
+
+void Assembler::fucomip() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDF);
+ EMIT(0xE9);
+}
+
+
+void Assembler::fcompp() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDE);
+ EMIT(0xD9);
+}
+
+
+void Assembler::fnstsw_ax() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDF);
+ EMIT(0xE0);
+}
+
+
+void Assembler::fwait() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x9B);
+}
+
+
+void Assembler::frndint() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xD9);
+ EMIT(0xFC);
+}
+
+
+void Assembler::fnclex() {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDB);
+ EMIT(0xE2);
+}
+
+
+void Assembler::fnsave(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(esi, adr);
+}
+
+
+void Assembler::frstor(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ EMIT(0xDD);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::sahf() {
+ EnsureSpace ensure_space(this);
+ EMIT(0x9E);
+}
+
+
+void Assembler::setcc(Condition cc, Register reg) {
+ DCHECK(reg.is_byte_register());
+ EnsureSpace ensure_space(this);
+ EMIT(0x0F);
+ EMIT(0x90 | cc);
+ EMIT(0xC0 | reg.code());
+}
+
+
+void Assembler::GrowBuffer() {
+ DCHECK(buffer_overflow());
+ if (!own_buffer_) FATAL("external code buffer is too small");
+
+ // Compute new buffer size.
+ CodeDesc desc; // the new buffer
+ desc.buffer_size = 2 * buffer_size_;
+
+ // Some internal data structures overflow for very large buffers,
+ // they must ensure that kMaximalBufferSize is not too large.
+ if (desc.buffer_size > kMaximalBufferSize) {
+ V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
+ }
+
+ // Set up new buffer.
+ desc.buffer = NewArray<byte>(desc.buffer_size);
+ desc.origin = this;
+ desc.instr_size = pc_offset();
+ desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
+
+ // Clear the buffer in debug mode. Use 'int3' instructions to make
+ // sure to get into problems if we ever run uninitialized code.
+#ifdef DEBUG
+ memset(desc.buffer, 0xCC, desc.buffer_size);
+#endif
+
+ // Copy the data.
+ int pc_delta = desc.buffer - buffer_;
+ int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+ MemMove(desc.buffer, buffer_, desc.instr_size);
+ MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
+ desc.reloc_size);
+
+ DeleteArray(buffer_);
+ buffer_ = desc.buffer;
+ buffer_size_ = desc.buffer_size;
+ pc_ += pc_delta;
+ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.last_pc() + pc_delta);
+
+ // Relocate internal references.
+ for (auto pos : internal_reference_positions_) {
+ int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
+ *p += pc_delta;
+ }
+
+ DCHECK(!buffer_overflow());
+}
+
+
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
+ DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
+ DCHECK(is_uint8(imm8));
+ DCHECK((op1 & 0x01) == 0); // should be 8bit operation
+ EMIT(op1);
+ EMIT(op2 | dst.code());
+ EMIT(imm8);
+}
+
+
+void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
+ DCHECK((0 <= sel) && (sel <= 7));
+ Register ireg = { sel };
+ if (x.is_int8()) {
+ EMIT(0x83); // using a sign-extended 8-bit immediate.
+ emit_operand(ireg, dst);
+ EMIT(x.immediate() & 0xFF);
+ } else if (dst.is_reg(eax)) {
+ EMIT((sel << 3) | 0x05); // short form if the destination is eax.
+ emit(x);
+ } else {
+ EMIT(0x81); // using a literal 32-bit immediate.
+ emit_operand(ireg, dst);
+ emit(x);
+ }
+}
+
+
+void Assembler::emit_operand(Register reg, const Operand& adr) {
+ const unsigned length = adr.len_;
+ DCHECK(length > 0);
+
+ // Emit updated ModRM byte containing the given register.
+ pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
+
+ // Emit the rest of the encoded operand.
+ for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
+ pc_ += length;
+
+ // Emit relocation information if necessary.
+ if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
+ pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
+ RecordRelocInfo(adr.rmode_);
+ if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
+ emit_label(*reinterpret_cast<Label**>(pc_));
+ } else {
+ pc_ += sizeof(int32_t);
+ }
+ }
+}
+
+
+void Assembler::emit_label(Label* label) {
+ if (label->is_bound()) {
+ internal_reference_positions_.push_back(pc_offset());
+ emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
+ } else {
+ emit_disp(label, Displacement::CODE_ABSOLUTE);
+ }
+}
+
+
+void Assembler::emit_farith(int b1, int b2, int i) {
+ DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
+ DCHECK(0 <= i && i < 8); // illegal stack offset
+ EMIT(b1);
+ EMIT(b2 + i);
+}
+
+
+void Assembler::db(uint8_t data) {
+ EnsureSpace ensure_space(this);
+ EMIT(data);
+}
+
+
+void Assembler::dd(uint32_t data) {
+ EnsureSpace ensure_space(this);
+ emit(data);
+}
+
+
+void Assembler::dq(uint64_t data) {
+ EnsureSpace ensure_space(this);
+ emit_q(data);
+}
+
+
+void Assembler::dd(Label* label) {
+ EnsureSpace ensure_space(this);
+ RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+ emit_label(label);
+}
+
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+ DCHECK(!RelocInfo::IsNone(rmode));
+ // Don't record external references unless the heap will be serialized.
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
+ !serializer_enabled() && !emit_debug_code()) {
+ return;
+ }
+ RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
+ reloc_info_writer.Write(&rinfo);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87.h 2017-12-28 01:53:26.598456142 +0100
@@ -0,0 +1,1140 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2011 the V8 project authors. All rights reserved.
+
+// A light-weight IA32 Assembler.
+
+#ifndef V8_X87_ASSEMBLER_X87_H_
+#define V8_X87_ASSEMBLER_X87_H_
+
+#include <deque>
+
+#include "src/assembler.h"
+#include "src/isolate.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+#define GENERAL_REGISTERS(V) \
+ V(eax) \
+ V(ecx) \
+ V(edx) \
+ V(ebx) \
+ V(esp) \
+ V(ebp) \
+ V(esi) \
+ V(edi)
+
+#define ALLOCATABLE_GENERAL_REGISTERS(V) \
+ V(eax) \
+ V(ecx) \
+ V(edx) \
+ V(ebx) \
+ V(esi) \
+ V(edi)
+
+#define DOUBLE_REGISTERS(V) \
+ V(stX_0) \
+ V(stX_1) \
+ V(stX_2) \
+ V(stX_3) \
+ V(stX_4) \
+ V(stX_5) \
+ V(stX_6) \
+ V(stX_7)
+
+#define FLOAT_REGISTERS DOUBLE_REGISTERS
+#define SIMD128_REGISTERS DOUBLE_REGISTERS
+
+#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
+ V(stX_0) \
+ V(stX_1) \
+ V(stX_2) \
+ V(stX_3) \
+ V(stX_4) \
+ V(stX_5)
+
+// CPU Registers.
+//
+// 1) We would prefer to use an enum, but enum values are assignment-
+// compatible with int, which has caused code-generation bugs.
+//
+// 2) We would prefer to use a class instead of a struct but we don't like
+// the register initialization to depend on the particular initialization
+// order (which appears to be different on OS X, Linux, and Windows for the
+// installed versions of C++ we tried). Using a struct permits C-style
+// "initialization". Also, the Register objects cannot be const as this
+// forces initialization stubs in MSVC, making us dependent on initialization
+// order.
+//
+// 3) By not using an enum, we are possibly preventing the compiler from
+// doing certain constant folds, which may significantly reduce the
+// code generated for some assembly instructions (because they boil down
+// to a few constants). If this is a problem, we could change the code
+// such that we use an enum in optimized mode, and the struct in debug
+// mode. This way we get the compile-time error checking in debug mode
+// and best performance in optimized code.
+//
+struct Register {
+ enum Code {
+#define REGISTER_CODE(R) kCode_##R,
+ GENERAL_REGISTERS(REGISTER_CODE)
+#undef REGISTER_CODE
+ kAfterLast,
+ kCode_no_reg = -1
+ };
+
+ static const int kNumRegisters = Code::kAfterLast;
+
+ static Register from_code(int code) {
+ DCHECK(code >= 0);
+ DCHECK(code < kNumRegisters);
+ Register r = {code};
+ return r;
+ }
+ bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
+ bool is(Register reg) const { return reg_code == reg.reg_code; }
+ int code() const {
+ DCHECK(is_valid());
+ return reg_code;
+ }
+ int bit() const {
+ DCHECK(is_valid());
+ return 1 << reg_code;
+ }
+
+ bool is_byte_register() const { return reg_code <= 3; }
+
+ // Unfortunately we can't make this private in a struct.
+ int reg_code;
+};
+
+
+#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
+GENERAL_REGISTERS(DECLARE_REGISTER)
+#undef DECLARE_REGISTER
+const Register no_reg = {Register::kCode_no_reg};
+
+static const bool kSimpleFPAliasing = true;
+static const bool kSimdMaskRegisters = false;
+
+struct X87Register {
+ enum Code {
+#define REGISTER_CODE(R) kCode_##R,
+ DOUBLE_REGISTERS(REGISTER_CODE)
+#undef REGISTER_CODE
+ kAfterLast,
+ kCode_no_reg = -1
+ };
+
+ static const int kMaxNumRegisters = Code::kAfterLast;
+ static const int kMaxNumAllocatableRegisters = 6;
+
+ static X87Register from_code(int code) {
+ X87Register result = {code};
+ return result;
+ }
+
+ bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
+
+ int code() const {
+ DCHECK(is_valid());
+ return reg_code;
+ }
+
+ bool is(X87Register reg) const { return reg_code == reg.reg_code; }
+
+ int reg_code;
+};
+
+typedef X87Register FloatRegister;
+
+typedef X87Register DoubleRegister;
+
+// TODO(x87) Define SIMD registers.
+typedef X87Register Simd128Register;
+
+#define DECLARE_REGISTER(R) \
+ const DoubleRegister R = {DoubleRegister::kCode_##R};
+DOUBLE_REGISTERS(DECLARE_REGISTER)
+#undef DECLARE_REGISTER
+const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
+
+enum Condition {
+ // any value < 0 is considered no_condition
+ no_condition = -1,
+
+ overflow = 0,
+ no_overflow = 1,
+ below = 2,
+ above_equal = 3,
+ equal = 4,
+ not_equal = 5,
+ below_equal = 6,
+ above = 7,
+ negative = 8,
+ positive = 9,
+ parity_even = 10,
+ parity_odd = 11,
+ less = 12,
+ greater_equal = 13,
+ less_equal = 14,
+ greater = 15,
+
+ // aliases
+ carry = below,
+ not_carry = above_equal,
+ zero = equal,
+ not_zero = not_equal,
+ sign = negative,
+ not_sign = positive
+};
+
+
+// Returns the equivalent of !cc.
+// Negation of the default no_condition (-1) results in a non-default
+// no_condition value (-2). As long as tests for no_condition check
+// for condition < 0, this will work as expected.
+inline Condition NegateCondition(Condition cc) {
+ return static_cast<Condition>(cc ^ 1);
+}
+
+
+// Commute a condition such that {a cond b == b cond' a}.
+inline Condition CommuteCondition(Condition cc) {
+ switch (cc) {
+ case below:
+ return above;
+ case above:
+ return below;
+ case above_equal:
+ return below_equal;
+ case below_equal:
+ return above_equal;
+ case less:
+ return greater;
+ case greater:
+ return less;
+ case greater_equal:
+ return less_equal;
+ case less_equal:
+ return greater_equal;
+ default:
+ return cc;
+ }
+}
+
+
+enum RoundingMode {
+ kRoundToNearest = 0x0,
+ kRoundDown = 0x1,
+ kRoundUp = 0x2,
+ kRoundToZero = 0x3
+};
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Immediates
+
+class Immediate BASE_EMBEDDED {
+ public:
+ inline explicit Immediate(int x);
+ inline explicit Immediate(const ExternalReference& ext);
+ inline explicit Immediate(Handle<HeapObject> handle);
+ inline explicit Immediate(Smi* value);
+ inline explicit Immediate(Address addr);
+ inline explicit Immediate(Address x, RelocInfo::Mode rmode);
+
+ static Immediate EmbeddedNumber(double number); // Smi or HeapNumber.
+ static Immediate EmbeddedCode(CodeStub* code);
+
+ static Immediate CodeRelativeOffset(Label* label) {
+ return Immediate(label);
+ }
+
+ bool is_heap_object_request() const {
+ DCHECK_IMPLIES(is_heap_object_request_,
+ rmode_ == RelocInfo::EMBEDDED_OBJECT ||
+ rmode_ == RelocInfo::CODE_TARGET);
+ return is_heap_object_request_;
+ }
+
+ HeapObjectRequest heap_object_request() const {
+ DCHECK(is_heap_object_request());
+ return value_.heap_object_request;
+ }
+
+ int immediate() const {
+ DCHECK(!is_heap_object_request());
+ return value_.immediate;
+ }
+
+ bool is_zero() const { return RelocInfo::IsNone(rmode_) && immediate() == 0; }
+ bool is_int8() const {
+ return RelocInfo::IsNone(rmode_) && i::is_int8(immediate());
+ }
+ bool is_uint8() const {
+ return RelocInfo::IsNone(rmode_) && i::is_uint8(immediate());
+ }
+ bool is_int16() const {
+ return RelocInfo::IsNone(rmode_) && i::is_int16(immediate());
+ }
+
+ bool is_uint16() const {
+ return RelocInfo::IsNone(rmode_) && i::is_uint16(immediate());
+ }
+
+ RelocInfo::Mode rmode() const { return rmode_; }
+
+ private:
+ inline explicit Immediate(Label* value);
+
+ union Value {
+ Value() {}
+ HeapObjectRequest heap_object_request;
+ int immediate;
+ } value_;
+ bool is_heap_object_request_ = false;
+ RelocInfo::Mode rmode_;
+
+ friend class Operand;
+ friend class Assembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Operands
+
+enum ScaleFactor {
+ times_1 = 0,
+ times_2 = 1,
+ times_4 = 2,
+ times_8 = 3,
+ times_int_size = times_4,
+ times_half_pointer_size = times_2,
+ times_pointer_size = times_4,
+ times_twice_pointer_size = times_8
+};
+
+
+class Operand BASE_EMBEDDED {
+ public:
+ // reg
+ INLINE(explicit Operand(Register reg));
+
+ // [disp/r]
+ INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
+
+ // [disp/r]
+ INLINE(explicit Operand(Immediate imm));
+
+ // [base + disp/r]
+ explicit Operand(Register base, int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE32);
+
+ // [base + index*scale + disp/r]
+ explicit Operand(Register base,
+ Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE32);
+
+ // [index*scale + disp/r]
+ explicit Operand(Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE32);
+
+ static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
+ return Operand(index, scale, reinterpret_cast<int32_t>(table),
+ RelocInfo::INTERNAL_REFERENCE);
+ }
+
+ static Operand StaticVariable(const ExternalReference& ext) {
+ return Operand(reinterpret_cast<int32_t>(ext.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ static Operand StaticArray(Register index,
+ ScaleFactor scale,
+ const ExternalReference& arr) {
+ return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ static Operand ForCell(Handle<Cell> cell) {
+ return Operand(reinterpret_cast<int32_t>(cell.address()), RelocInfo::CELL);
+ }
+
+ static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
+ return Operand(base, imm.value_.immediate, imm.rmode_);
+ }
+
+ // Returns true if this Operand is a wrapper for the specified register.
+ bool is_reg(Register reg) const;
+
+ // Returns true if this Operand is a wrapper for one register.
+ bool is_reg_only() const;
+
+ // Asserts that this Operand is a wrapper for one register and returns the
+ // register.
+ Register reg() const;
+
+ private:
+ // Set the ModRM byte without an encoded 'reg' register. The
+ // register is encoded later as part of the emit_operand operation.
+ inline void set_modrm(int mod, Register rm);
+
+ inline void set_sib(ScaleFactor scale, Register index, Register base);
+ inline void set_disp8(int8_t disp);
+ inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
+
+ byte buf_[6];
+ // The number of bytes in buf_.
+ unsigned int len_;
+ // Only valid if len_ > 4.
+ RelocInfo::Mode rmode_;
+
+ friend class Assembler;
+ friend class MacroAssembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// A Displacement describes the 32bit immediate field of an instruction which
+// may be used together with a Label in order to refer to a yet unknown code
+// position. Displacements stored in the instruction stream are used to describe
+// the instruction and to chain a list of instructions using the same Label.
+// A Displacement contains 2 different fields:
+//
+// next field: position of next displacement in the chain (0 = end of list)
+// type field: instruction type
+//
+// A next value of null (0) indicates the end of a chain (note that there can
+// be no displacement at position zero, because there is always at least one
+// instruction byte before the displacement).
+//
+// Displacement _data field layout
+//
+// |31.....2|1......0|
+// [ next | type |
+
+class Displacement BASE_EMBEDDED {
+ public:
+ enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
+
+ int data() const { return data_; }
+ Type type() const { return TypeField::decode(data_); }
+ void next(Label* L) const {
+ int n = NextField::decode(data_);
+ n > 0 ? L->link_to(n) : L->Unuse();
+ }
+ void link_to(Label* L) { init(L, type()); }
+
+ explicit Displacement(int data) { data_ = data; }
+
+ Displacement(Label* L, Type type) { init(L, type); }
+
+ void print() {
+ PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
+ NextField::decode(data_));
+ }
+
+ private:
+ int data_;
+
+ class TypeField: public BitField<Type, 0, 2> {};
+ class NextField: public BitField<int, 2, 32-2> {};
+
+ void init(Label* L, Type type);
+};
+
+
+class Assembler : public AssemblerBase {
+ private:
+ // We check before assembling an instruction that there is sufficient
+ // space to write an instruction and its relocation information.
+ // The relocation writer's position must be kGap bytes above the end of
+ // the generated instructions. This leaves enough space for the
+ // longest possible ia32 instruction, 15 bytes, and the longest possible
+ // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
+ // (There is a 15 byte limit on ia32 instruction length that rules out some
+ // otherwise valid instructions.)
+ // This allows for a single, fast space check per instruction.
+ static const int kGap = 32;
+
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is NULL, the assembler allocates and grows its own
+ // buffer, and buffer_size determines the initial buffer size. The buffer is
+ // owned by the assembler and deallocated upon destruction of the assembler.
+ //
+ // If the provided buffer is not NULL, the assembler uses the provided buffer
+ // for code generation and assumes its size to be buffer_size. If the buffer
+ // is too small, a fatal error occurs. No deallocation of the buffer is done
+ // upon destruction of the assembler.
+ Assembler(Isolate* isolate, void* buffer, int buffer_size)
+ : Assembler(IsolateData(isolate), buffer, buffer_size) {}
+ Assembler(IsolateData isolate_data, void* buffer, int buffer_size);
+ virtual ~Assembler() {}
+
+ // GetCode emits any pending (non-emitted) code and fills the descriptor
+ // desc. GetCode() is idempotent; it returns the same result if no other
+ // Assembler functions are invoked in between GetCode() calls.
+ void GetCode(Isolate* isolate, CodeDesc* desc);
+
+ // Read/Modify the code target in the branch/call instruction at pc.
+ // The isolate argument is unused (and may be nullptr) when skipping flushing.
+ inline static Address target_address_at(Address pc, Address constant_pool);
+ inline static void set_target_address_at(
+ Isolate* isolate, Address pc, Address constant_pool, Address target,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
+ static inline Address target_address_at(Address pc, Code* code);
+ static inline void set_target_address_at(
+ Isolate* isolate, Address pc, Code* code, Address target,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
+
+ // Return the code target address at a call site from the return address
+ // of that call in the instruction stream.
+ inline static Address target_address_from_return_address(Address pc);
+
+ // This sets the branch destination (which is in the instruction on x86).
+ // This is for calls and branches within generated code.
+ inline static void deserialization_set_special_target_at(
+ Isolate* isolate, Address instruction_payload, Code* code,
+ Address target) {
+ set_target_address_at(isolate, instruction_payload, code, target);
+ }
+
+ // This sets the internal reference at the pc.
+ inline static void deserialization_set_target_internal_reference_at(
+ Isolate* isolate, Address pc, Address target,
+ RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
+
+ static const int kSpecialTargetSize = kPointerSize;
+
+ // Distance between the address of the code target in the call instruction
+ // and the return address
+ static const int kCallTargetAddressOffset = kPointerSize;
+
+ static const int kCallInstructionLength = 5;
+
+ // The debug break slot must be able to contain a call instruction.
+ static const int kDebugBreakSlotLength = kCallInstructionLength;
+
+ // Distance between start of patched debug break slot and the emitted address
+ // to jump to.
+ static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
+
+ // One byte opcode for test al, 0xXX.
+ static const byte kTestAlByte = 0xA8;
+ // One byte opcode for nop.
+ static const byte kNopByte = 0x90;
+
+ // One byte opcode for a short unconditional jump.
+ static const byte kJmpShortOpcode = 0xEB;
+ // One byte prefix for a short conditional jump.
+ static const byte kJccShortPrefix = 0x70;
+ static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
+ static const byte kJcShortOpcode = kJccShortPrefix | carry;
+ static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
+ static const byte kJzShortOpcode = kJccShortPrefix | zero;
+
+
+ // ---------------------------------------------------------------------------
+ // Code generation
+ //
+ // - function names correspond one-to-one to ia32 instruction mnemonics
+ // - unless specified otherwise, instructions operate on 32bit operands
+ // - instructions on 8bit (byte) operands/registers have a trailing '_b'
+ // - instructions on 16bit (word) operands/registers have a trailing '_w'
+ // - naming conflicts with C++ keywords are resolved via a trailing '_'
+
+ // NOTE ON INTERFACE: Currently, the interface is not very consistent
+ // in the sense that some operations (e.g. mov()) can be called in more
+ // the one way to generate the same instruction: The Register argument
+ // can in some cases be replaced with an Operand(Register) argument.
+ // This should be cleaned up and made more orthogonal. The questions
+ // is: should we always use Operands instead of Registers where an
+ // Operand is possible, or should we have a Register (overloaded) form
+ // instead? We must be careful to make sure that the selected instruction
+ // is obvious from the parameters to avoid hard-to-find code generation
+ // bugs.
+
+ // Insert the smallest number of nop instructions
+ // possible to align the pc offset to a multiple
+ // of m. m must be a power of 2.
+ void Align(int m);
+ // Insert the smallest number of zero bytes possible to align the pc offset
+ // to a mulitple of m. m must be a power of 2 (>= 2).
+ void DataAlign(int m);
+ void Nop(int bytes = 1);
+ // Aligns code to something that's optimal for a jump target for the platform.
+ void CodeTargetAlign();
+
+ // Stack
+ void pushad();
+ void popad();
+
+ void pushfd();
+ void popfd();
+
+ void push(const Immediate& x);
+ void push_imm32(int32_t imm32);
+ void push(Register src);
+ void push(const Operand& src);
+
+ void pop(Register dst);
+ void pop(const Operand& dst);
+
+ void enter(const Immediate& size);
+ void leave();
+
+ // Moves
+ void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
+ void mov_b(Register dst, const Operand& src);
+ void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
+ void mov_b(const Operand& dst, int8_t imm8);
+ void mov_b(const Operand& dst, const Immediate& src);
+ void mov_b(const Operand& dst, Register src);
+
+ void mov_w(Register dst, const Operand& src);
+ void mov_w(const Operand& dst, Register src);
+ void mov_w(const Operand& dst, int16_t imm16);
+ void mov_w(const Operand& dst, const Immediate& src);
+
+
+ void mov(Register dst, int32_t imm32);
+ void mov(Register dst, const Immediate& x);
+ void mov(Register dst, Handle<HeapObject> handle);
+ void mov(Register dst, const Operand& src);
+ void mov(Register dst, Register src);
+ void mov(const Operand& dst, const Immediate& x);
+ void mov(const Operand& dst, Handle<HeapObject> handle);
+ void mov(const Operand& dst, Register src);
+
+ void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
+ void movsx_b(Register dst, const Operand& src);
+
+ void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
+ void movsx_w(Register dst, const Operand& src);
+
+ void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
+ void movzx_b(Register dst, const Operand& src);
+
+ void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
+ void movzx_w(Register dst, const Operand& src);
+
+ // Flag management.
+ void cld();
+
+ // Repetitive string instructions.
+ void rep_movs();
+ void rep_stos();
+ void stos();
+
+ // Exchange
+ void xchg(Register dst, Register src);
+ void xchg(Register dst, const Operand& src);
+ void xchg_b(Register reg, const Operand& op);
+ void xchg_w(Register reg, const Operand& op);
+
+ // Lock prefix
+ void lock();
+
+ // CompareExchange
+ void cmpxchg(const Operand& dst, Register src);
+ void cmpxchg_b(const Operand& dst, Register src);
+ void cmpxchg_w(const Operand& dst, Register src);
+
+ // Arithmetics
+ void adc(Register dst, int32_t imm32);
+ void adc(Register dst, const Operand& src);
+
+ void add(Register dst, Register src) { add(dst, Operand(src)); }
+ void add(Register dst, const Operand& src);
+ void add(const Operand& dst, Register src);
+ void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
+ void add(const Operand& dst, const Immediate& x);
+
+ void and_(Register dst, int32_t imm32);
+ void and_(Register dst, const Immediate& x);
+ void and_(Register dst, Register src) { and_(dst, Operand(src)); }
+ void and_(Register dst, const Operand& src);
+ void and_(const Operand& dst, Register src);
+ void and_(const Operand& dst, const Immediate& x);
+
+ void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
+ void cmpb(const Operand& op, Immediate imm8);
+ void cmpb(Register reg, const Operand& op);
+ void cmpb(const Operand& op, Register reg);
+ void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
+ void cmpb_al(const Operand& op);
+ void cmpw_ax(const Operand& op);
+ void cmpw(const Operand& dst, Immediate src);
+ void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
+ void cmpw(Register dst, const Operand& src);
+ void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
+ void cmpw(const Operand& dst, Register src);
+ void cmp(Register reg, int32_t imm32);
+ void cmp(Register reg, Handle<HeapObject> handle);
+ void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
+ void cmp(Register reg, const Operand& op);
+ void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
+ void cmp(const Operand& op, Register reg);
+ void cmp(const Operand& op, const Immediate& imm);
+ void cmp(const Operand& op, Handle<HeapObject> handle);
+
+ void dec_b(Register dst);
+ void dec_b(const Operand& dst);
+
+ void dec(Register dst);
+ void dec(const Operand& dst);
+
+ void cdq();
+
+ void idiv(Register src) { idiv(Operand(src)); }
+ void idiv(const Operand& src);
+ void div(Register src) { div(Operand(src)); }
+ void div(const Operand& src);
+
+ // Signed multiply instructions.
+ void imul(Register src); // edx:eax = eax * src.
+ void imul(Register dst, Register src) { imul(dst, Operand(src)); }
+ void imul(Register dst, const Operand& src); // dst = dst * src.
+ void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
+ void imul(Register dst, const Operand& src, int32_t imm32);
+
+ void inc(Register dst);
+ void inc(const Operand& dst);
+
+ void lea(Register dst, const Operand& src);
+
+ // Unsigned multiply instruction.
+ void mul(Register src); // edx:eax = eax * reg.
+
+ void neg(Register dst);
+ void neg(const Operand& dst);
+
+ void not_(Register dst);
+ void not_(const Operand& dst);
+
+ void or_(Register dst, int32_t imm32);
+ void or_(Register dst, Register src) { or_(dst, Operand(src)); }
+ void or_(Register dst, const Operand& src);
+ void or_(const Operand& dst, Register src);
+ void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
+ void or_(const Operand& dst, const Immediate& x);
+
+ void rcl(Register dst, uint8_t imm8);
+ void rcr(Register dst, uint8_t imm8);
+
+ void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
+ void ror(const Operand& dst, uint8_t imm8);
+ void ror_cl(Register dst) { ror_cl(Operand(dst)); }
+ void ror_cl(const Operand& dst);
+
+ void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
+ void sar(const Operand& dst, uint8_t imm8);
+ void sar_cl(Register dst) { sar_cl(Operand(dst)); }
+ void sar_cl(const Operand& dst);
+
+ void sbb(Register dst, const Operand& src);
+
+ void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
+ void shl(const Operand& dst, uint8_t imm8);
+ void shl_cl(Register dst) { shl_cl(Operand(dst)); }
+ void shl_cl(const Operand& dst);
+ void shld(Register dst, Register src, uint8_t shift);
+ void shld_cl(Register dst, Register src);
+
+ void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
+ void shr(const Operand& dst, uint8_t imm8);
+ void shr_cl(Register dst) { shr_cl(Operand(dst)); }
+ void shr_cl(const Operand& dst);
+ void shrd(Register dst, Register src, uint8_t shift);
+ void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
+ void shrd_cl(const Operand& dst, Register src);
+
+ void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
+ void sub(const Operand& dst, const Immediate& x);
+ void sub(Register dst, Register src) { sub(dst, Operand(src)); }
+ void sub(Register dst, const Operand& src);
+ void sub(const Operand& dst, Register src);
+
+ void test(Register reg, const Immediate& imm);
+ void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
+ void test(Register reg, const Operand& op);
+ void test(const Operand& op, const Immediate& imm);
+ void test(const Operand& op, Register reg) { test(reg, op); }
+ void test_b(Register reg, const Operand& op);
+ void test_b(Register reg, Immediate imm8);
+ void test_b(const Operand& op, Immediate imm8);
+ void test_b(const Operand& op, Register reg) { test_b(reg, op); }
+ void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
+ void test_w(Register reg, const Operand& op);
+ void test_w(Register reg, Immediate imm16);
+ void test_w(const Operand& op, Immediate imm16);
+ void test_w(const Operand& op, Register reg) { test_w(reg, op); }
+ void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
+
+ void xor_(Register dst, int32_t imm32);
+ void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
+ void xor_(Register dst, const Operand& src);
+ void xor_(const Operand& dst, Register src);
+ void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
+ void xor_(const Operand& dst, const Immediate& x);
+
+ // Bit operations.
+ void bt(const Operand& dst, Register src);
+ void bts(Register dst, Register src) { bts(Operand(dst), src); }
+ void bts(const Operand& dst, Register src);
+ void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
+ void bsr(Register dst, const Operand& src);
+ void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
+ void bsf(Register dst, const Operand& src);
+
+ // Miscellaneous
+ void hlt();
+ void int3();
+ void nop();
+ void ret(int imm16);
+ void ud2();
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ //
+ // Takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // j(cc, &L); // forward branch to unbound label
+ // bind(&L); // bind label to the current pc
+ // j(cc, &L); // backward branch to bound label
+ // bind(&L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void bind(Label* L); // binds an unbound label L to the current code position
+
+ // Calls
+ void call(Label* L);
+ void call(byte* entry, RelocInfo::Mode rmode);
+ int CallSize(const Operand& adr);
+ void call(Register reg) { call(Operand(reg)); }
+ void call(const Operand& adr);
+ int CallSize(Handle<Code> code, RelocInfo::Mode mode);
+ void call(Handle<Code> code, RelocInfo::Mode rmode);
+ void call(CodeStub* stub);
+
+ // Jumps
+ // unconditional jump to L
+ void jmp(Label* L, Label::Distance distance = Label::kFar);
+ void jmp(byte* entry, RelocInfo::Mode rmode);
+ void jmp(Register reg) { jmp(Operand(reg)); }
+ void jmp(const Operand& adr);
+ void jmp(Handle<Code> code, RelocInfo::Mode rmode);
+
+ // Conditional jumps
+ void j(Condition cc,
+ Label* L,
+ Label::Distance distance = Label::kFar);
+ void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
+ void j(Condition cc, Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
+
+ // Floating-point operations
+ void fld(int i);
+ void fstp(int i);
+
+ void fld1();
+ void fldz();
+ void fldpi();
+ void fldln2();
+
+ void fld_s(const Operand& adr);
+ void fld_d(const Operand& adr);
+
+ void fstp_s(const Operand& adr);
+ void fst_s(const Operand& adr);
+ void fstp_d(const Operand& adr);
+ void fst_d(const Operand& adr);
+
+ void fild_s(const Operand& adr);
+ void fild_d(const Operand& adr);
+
+ void fist_s(const Operand& adr);
+
+ void fistp_s(const Operand& adr);
+ void fistp_d(const Operand& adr);
+
+ // The fisttp instructions require SSE3.
+ void fisttp_s(const Operand& adr);
+ void fisttp_d(const Operand& adr);
+
+ void fabs();
+ void fchs();
+ void fsqrt();
+ void fcos();
+ void fsin();
+ void fptan();
+ void fyl2x();
+ void f2xm1();
+ void fscale();
+ void fninit();
+
+ void fadd(int i);
+ void fadd_i(int i);
+ void fadd_d(const Operand& adr);
+ void fsub(int i);
+ void fsub_i(int i);
+ void fsub_d(const Operand& adr);
+ void fsubr_d(const Operand& adr);
+ void fmul(int i);
+ void fmul_d(const Operand& adr);
+ void fmul_i(int i);
+ void fdiv(int i);
+ void fdiv_d(const Operand& adr);
+ void fdivr_d(const Operand& adr);
+ void fdiv_i(int i);
+
+ void fisub_s(const Operand& adr);
+
+ void faddp(int i = 1);
+ void fsubp(int i = 1);
+ void fsubr(int i = 1);
+ void fsubrp(int i = 1);
+ void fmulp(int i = 1);
+ void fdivp(int i = 1);
+ void fprem();
+ void fprem1();
+
+ void fxch(int i = 1);
+ void fincstp();
+ void ffree(int i = 0);
+
+ void ftst();
+ void fxam();
+ void fucomp(int i);
+ void fucompp();
+ void fucomi(int i);
+ void fucomip();
+ void fcompp();
+ void fnstsw_ax();
+ void fldcw(const Operand& adr);
+ void fnstcw(const Operand& adr);
+ void fwait();
+ void fnclex();
+ void fnsave(const Operand& adr);
+ void frstor(const Operand& adr);
+
+ void frndint();
+
+ void sahf();
+ void setcc(Condition cc, Register reg);
+
+ void cpuid();
+
+ // TODO(lrn): Need SFENCE for movnt?
+
+ // Check the code size generated from label to here.
+ int SizeOfCodeGeneratedSince(Label* label) {
+ return pc_offset() - label->pos();
+ }
+
+ // Mark address of a debug break slot.
+ void RecordDebugBreakSlot(RelocInfo::Mode mode);
+
+ // Record a comment relocation entry that can be used by a disassembler.
+ // Use --code-comments to enable.
+ void RecordComment(const char* msg);
+
+ // Record a deoptimization reason that can be used by a log or cpu profiler.
+ // Use --trace-deopt to enable.
+ void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
+ int id);
+
+ // Writes a single byte or word of data in the code stream. Used for
+ // inline tables, e.g., jump-tables.
+ void db(uint8_t data);
+ void dd(uint32_t data);
+ void dq(uint64_t data);
+ void dp(uintptr_t data) { dd(data); }
+ void dd(Label* label);
+
+ // Check if there is less than kGap bytes available in the buffer.
+ // If this is the case, we need to grow the buffer before emitting
+ // an instruction or relocation information.
+ inline bool buffer_overflow() const {
+ return pc_ >= reloc_info_writer.pos() - kGap;
+ }
+
+ // Get the number of bytes available in the buffer.
+ inline int available_space() const { return reloc_info_writer.pos() - pc_; }
+
+ static bool IsNop(Address addr);
+
+ int relocation_writer_size() {
+ return (buffer_ + buffer_size_) - reloc_info_writer.pos();
+ }
+
+ // Avoid overflows for displacements etc.
+ static const int kMaximalBufferSize = 512*MB;
+
+ byte byte_at(int pos) { return buffer_[pos]; }
+ void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
+
+ void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
+ ConstantPoolEntry::Access access,
+ ConstantPoolEntry::Type type) {
+ // No embedded constant pool support.
+ UNREACHABLE();
+ }
+
+ protected:
+ byte* addr_at(int pos) { return buffer_ + pos; }
+
+
+ private:
+ uint32_t long_at(int pos) {
+ return *reinterpret_cast<uint32_t*>(addr_at(pos));
+ }
+ void long_at_put(int pos, uint32_t x) {
+ *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
+ }
+
+ // code emission
+ void GrowBuffer();
+ inline void emit(uint32_t x);
+ inline void emit(Handle<HeapObject> handle);
+ inline void emit(uint32_t x, RelocInfo::Mode rmode);
+ inline void emit(Handle<Code> code, RelocInfo::Mode rmode);
+ inline void emit(const Immediate& x);
+ inline void emit_b(Immediate x);
+ inline void emit_w(const Immediate& x);
+ inline void emit_q(uint64_t x);
+
+ // Emit the code-object-relative offset of the label's position
+ inline void emit_code_relative_offset(Label* label);
+
+ // instruction generation
+ void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+ // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
+ // with a given destination expression and an immediate operand. It attempts
+ // to use the shortest encoding possible.
+ // sel specifies the /n in the modrm byte (see the Intel PRM).
+ void emit_arith(int sel, Operand dst, const Immediate& x);
+
+ void emit_operand(Register reg, const Operand& adr);
+
+ void emit_label(Label* label);
+
+ void emit_farith(int b1, int b2, int i);
+
+ // labels
+ void print(Label* L);
+ void bind_to(Label* L, int pos);
+
+ // displacements
+ inline Displacement disp_at(Label* L);
+ inline void disp_at_put(Label* L, Displacement disp);
+ inline void emit_disp(Label* L, Displacement::Type type);
+ inline void emit_near_disp(Label* L);
+
+ // record reloc info for current pc_
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
+
+ friend class CodePatcher;
+ friend class EnsureSpace;
+
+ // Internal reference positions, required for (potential) patching in
+ // GrowBuffer(); contains only those internal references whose labels
+ // are already bound.
+ std::deque<int> internal_reference_positions_;
+
+ // code generation
+ RelocInfoWriter reloc_info_writer;
+
+ // The following functions help with avoiding allocations of embedded heap
+ // objects during the code assembly phase. {RequestHeapObject} records the
+ // need for a future heap number allocation or code stub generation. After
+ // code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these
+ // objects and place them where they are expected (determined by the pc offset
+ // associated with each request). That is, for each request, it will patch the
+ // dummy heap object handle that we emitted during code assembly with the
+ // actual heap object handle.
+ void RequestHeapObject(HeapObjectRequest request);
+ void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
+
+ std::forward_list<HeapObjectRequest> heap_object_requests_;
+};
+
+
+// Helper class that ensures that there is enough space for generating
+// instructions and relocation information. The constructor makes
+// sure that there is enough space and (in debug mode) the destructor
+// checks that we did not generate too much.
+class EnsureSpace BASE_EMBEDDED {
+ public:
+ explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
+ if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
+#ifdef DEBUG
+ space_before_ = assembler_->available_space();
+#endif
+ }
+
+#ifdef DEBUG
+ ~EnsureSpace() {
+ int bytes_generated = space_before_ - assembler_->available_space();
+ DCHECK(bytes_generated < assembler_->kGap);
+ }
+#endif
+
+ private:
+ Assembler* assembler_;
+#ifdef DEBUG
+ int space_before_;
+#endif
+};
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_ASSEMBLER_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87-inl.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87-inl.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/assembler-x87-inl.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/assembler-x87-inl.h 2017-12-28 01:52:55.041936208 +0100
@@ -0,0 +1,528 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2012 the V8 project authors. All rights reserved.
+
+// A light-weight IA32 Assembler.
+
+#ifndef V8_X87_ASSEMBLER_X87_INL_H_
+#define V8_X87_ASSEMBLER_X87_INL_H_
+
+#include "src/x87/assembler-x87.h"
+
+#include "src/assembler.h"
+#include "src/debug/debug.h"
+#include "src/objects-inl.h"
+
+namespace v8 {
+namespace internal {
+
+bool CpuFeatures::SupportsCrankshaft() { return true; }
+
+bool CpuFeatures::SupportsWasmSimd128() { return false; }
+
+static const byte kCallOpcode = 0xE8;
+static const int kNoCodeAgeSequenceLength = 5;
+
+
+// The modes possibly affected by apply must be in kApplyMask.
+void RelocInfo::apply(intptr_t delta) {
+ if (IsRuntimeEntry(rmode_) || IsCodeTarget(rmode_)) {
+ int32_t* p = reinterpret_cast<int32_t*>(pc_);
+ *p -= delta; // Relocate entry.
+ } else if (IsCodeAgeSequence(rmode_)) {
+ if (*pc_ == kCallOpcode) {
+ int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
+ *p -= delta; // Relocate entry.
+ }
+ } else if (IsDebugBreakSlot(rmode_) && IsPatchedDebugBreakSlotSequence()) {
+ // Special handling of a debug break slot when a break point is set (call
+ // instruction has been inserted).
+ int32_t* p = reinterpret_cast<int32_t*>(
+ pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
+ *p -= delta; // Relocate entry.
+ } else if (IsInternalReference(rmode_)) {
+ // absolute code pointer inside code object moves with the code object.
+ int32_t* p = reinterpret_cast<int32_t*>(pc_);
+ *p += delta; // Relocate entry.
+ }
+}
+
+
+Address RelocInfo::target_address() {
+ DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
+ return Assembler::target_address_at(pc_, host_);
+}
+
+Address RelocInfo::target_address_address() {
+ DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
+ || rmode_ == EMBEDDED_OBJECT
+ || rmode_ == EXTERNAL_REFERENCE);
+ return reinterpret_cast<Address>(pc_);
+}
+
+
+Address RelocInfo::constant_pool_entry_address() {
+ UNREACHABLE();
+}
+
+
+int RelocInfo::target_address_size() {
+ return Assembler::kSpecialTargetSize;
+}
+
+HeapObject* RelocInfo::target_object() {
+ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ return HeapObject::cast(Memory::Object_at(pc_));
+}
+
+Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
+ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ return Handle<HeapObject>::cast(Memory::Object_Handle_at(pc_));
+}
+
+void RelocInfo::set_target_object(HeapObject* target,
+ WriteBarrierMode write_barrier_mode,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
+ Memory::Object_at(pc_) = target;
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ Assembler::FlushICache(target->GetIsolate(), pc_, sizeof(Address));
+ }
+ if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
+ host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
+ target);
+ }
+}
+
+
+Address RelocInfo::target_external_reference() {
+ DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
+ return Memory::Address_at(pc_);
+}
+
+
+Address RelocInfo::target_internal_reference() {
+ DCHECK(rmode_ == INTERNAL_REFERENCE);
+ return Memory::Address_at(pc_);
+}
+
+
+Address RelocInfo::target_internal_reference_address() {
+ DCHECK(rmode_ == INTERNAL_REFERENCE);
+ return reinterpret_cast<Address>(pc_);
+}
+
+
+Address RelocInfo::target_runtime_entry(Assembler* origin) {
+ DCHECK(IsRuntimeEntry(rmode_));
+ return reinterpret_cast<Address>(*reinterpret_cast<int32_t*>(pc_));
+}
+
+void RelocInfo::set_target_runtime_entry(Isolate* isolate, Address target,
+ WriteBarrierMode write_barrier_mode,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(IsRuntimeEntry(rmode_));
+ if (target_address() != target) {
+ set_target_address(isolate, target, write_barrier_mode, icache_flush_mode);
+ }
+}
+
+
+Handle<Cell> RelocInfo::target_cell_handle() {
+ DCHECK(rmode_ == RelocInfo::CELL);
+ Address address = Memory::Address_at(pc_);
+ return Handle<Cell>(reinterpret_cast<Cell**>(address));
+}
+
+
+Cell* RelocInfo::target_cell() {
+ DCHECK(rmode_ == RelocInfo::CELL);
+ return Cell::FromValueAddress(Memory::Address_at(pc_));
+}
+
+
+void RelocInfo::set_target_cell(Cell* cell,
+ WriteBarrierMode write_barrier_mode,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(cell->IsCell());
+ DCHECK(rmode_ == RelocInfo::CELL);
+ Address address = cell->address() + Cell::kValueOffset;
+ Memory::Address_at(pc_) = address;
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ Assembler::FlushICache(cell->GetIsolate(), pc_, sizeof(Address));
+ }
+ if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
+ cell);
+ }
+}
+
+Handle<Code> RelocInfo::code_age_stub_handle(Assembler* origin) {
+ DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+ DCHECK(*pc_ == kCallOpcode);
+ return Handle<Code>::cast(Memory::Object_Handle_at(pc_ + 1));
+}
+
+
+Code* RelocInfo::code_age_stub() {
+ DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+ DCHECK(*pc_ == kCallOpcode);
+ return Code::GetCodeFromTargetAddress(
+ Assembler::target_address_at(pc_ + 1, host_));
+}
+
+
+void RelocInfo::set_code_age_stub(Code* stub,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(*pc_ == kCallOpcode);
+ DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
+ Assembler::set_target_address_at(stub->GetIsolate(), pc_ + 1, host_,
+ stub->instruction_start(),
+ icache_flush_mode);
+}
+
+
+Address RelocInfo::debug_call_address() {
+ DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
+ Address location = pc_ + Assembler::kPatchDebugBreakSlotAddressOffset;
+ return Assembler::target_address_at(location, host_);
+}
+
+void RelocInfo::set_debug_call_address(Isolate* isolate, Address target) {
+ DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
+ Address location = pc_ + Assembler::kPatchDebugBreakSlotAddressOffset;
+ Assembler::set_target_address_at(isolate, location, host_, target);
+ if (host() != NULL) {
+ Code* target_code = Code::GetCodeFromTargetAddress(target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
+ target_code);
+ }
+}
+
+void RelocInfo::WipeOut(Isolate* isolate) {
+ if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
+ IsInternalReference(rmode_)) {
+ Memory::Address_at(pc_) = NULL;
+ } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
+ // Effectively write zero into the relocation.
+ Assembler::set_target_address_at(isolate, pc_, host_,
+ pc_ + sizeof(int32_t));
+ } else {
+ UNREACHABLE();
+ }
+}
+
+template <typename ObjectVisitor>
+void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
+ RelocInfo::Mode mode = rmode();
+ if (mode == RelocInfo::EMBEDDED_OBJECT) {
+ visitor->VisitEmbeddedPointer(host(), this);
+ Assembler::FlushICache(isolate, pc_, sizeof(Address));
+ } else if (RelocInfo::IsCodeTarget(mode)) {
+ visitor->VisitCodeTarget(host(), this);
+ } else if (mode == RelocInfo::CELL) {
+ visitor->VisitCellPointer(host(), this);
+ } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+ visitor->VisitExternalReference(host(), this);
+ } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
+ visitor->VisitInternalReference(host(), this);
+ } else if (RelocInfo::IsCodeAgeSequence(mode)) {
+ visitor->VisitCodeAgeSequence(host(), this);
+ } else if (RelocInfo::IsDebugBreakSlot(mode) &&
+ IsPatchedDebugBreakSlotSequence()) {
+ visitor->VisitDebugTarget(host(), this);
+ } else if (IsRuntimeEntry(mode)) {
+ visitor->VisitRuntimeEntry(host(), this);
+ }
+}
+
+
+template<typename StaticVisitor>
+void RelocInfo::Visit(Heap* heap) {
+ RelocInfo::Mode mode = rmode();
+ if (mode == RelocInfo::EMBEDDED_OBJECT) {
+ StaticVisitor::VisitEmbeddedPointer(heap, this);
+ Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
+ } else if (RelocInfo::IsCodeTarget(mode)) {
+ StaticVisitor::VisitCodeTarget(heap, this);
+ } else if (mode == RelocInfo::CELL) {
+ StaticVisitor::VisitCell(heap, this);
+ } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
+ StaticVisitor::VisitExternalReference(this);
+ } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
+ StaticVisitor::VisitInternalReference(this);
+ } else if (RelocInfo::IsCodeAgeSequence(mode)) {
+ StaticVisitor::VisitCodeAgeSequence(heap, this);
+ } else if (RelocInfo::IsDebugBreakSlot(mode) &&
+ IsPatchedDebugBreakSlotSequence()) {
+ StaticVisitor::VisitDebugTarget(heap, this);
+ } else if (IsRuntimeEntry(mode)) {
+ StaticVisitor::VisitRuntimeEntry(this);
+ }
+}
+
+
+
+Immediate::Immediate(int x) {
+ value_.immediate = x;
+ rmode_ = RelocInfo::NONE32;
+}
+
+Immediate::Immediate(Address x, RelocInfo::Mode rmode) {
+ value_.immediate = reinterpret_cast<int32_t>(x);
+ rmode_ = rmode;
+}
+
+Immediate::Immediate(const ExternalReference& ext) {
+ value_.immediate = reinterpret_cast<int32_t>(ext.address());
+ rmode_ = RelocInfo::EXTERNAL_REFERENCE;
+}
+
+
+Immediate::Immediate(Label* internal_offset) {
+ value_.immediate = reinterpret_cast<int32_t>(internal_offset);
+ rmode_ = RelocInfo::INTERNAL_REFERENCE;
+}
+
+
+Immediate::Immediate(Handle<HeapObject> handle) {
+ value_.immediate = reinterpret_cast<intptr_t>(handle.address());
+ rmode_ = RelocInfo::EMBEDDED_OBJECT;
+}
+
+
+Immediate::Immediate(Smi* value) {
+ value_.immediate = reinterpret_cast<intptr_t>(value);
+ rmode_ = RelocInfo::NONE32;
+}
+
+
+Immediate::Immediate(Address addr) {
+ value_.immediate = reinterpret_cast<int32_t>(addr);
+ rmode_ = RelocInfo::NONE32;
+}
+
+
+void Assembler::emit(uint32_t x) {
+ *reinterpret_cast<uint32_t*>(pc_) = x;
+ pc_ += sizeof(uint32_t);
+}
+
+
+void Assembler::emit_q(uint64_t x) {
+ *reinterpret_cast<uint64_t*>(pc_) = x;
+ pc_ += sizeof(uint64_t);
+}
+
+
+void Assembler::emit(Handle<HeapObject> handle) {
+ emit(reinterpret_cast<intptr_t>(handle.address()),
+ RelocInfo::EMBEDDED_OBJECT);
+}
+
+
+void Assembler::emit(uint32_t x, RelocInfo::Mode rmode) {
+ if (!RelocInfo::IsNone(rmode) && rmode != RelocInfo::CODE_AGE_SEQUENCE) {
+ RecordRelocInfo(rmode);
+ }
+ emit(x);
+}
+
+
+void Assembler::emit(Handle<Code> code, RelocInfo::Mode rmode) {
+ emit(reinterpret_cast<intptr_t>(code.address()), rmode);
+}
+
+
+void Assembler::emit(const Immediate& x) {
+ if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) {
+ Label* label = reinterpret_cast<Label*>(x.immediate());
+ emit_code_relative_offset(label);
+ return;
+ }
+ if (!RelocInfo::IsNone(x.rmode_)) RecordRelocInfo(x.rmode_);
+ if (x.is_heap_object_request()) {
+ RequestHeapObject(x.heap_object_request());
+ emit(0);
+ } else {
+ emit(x.immediate());
+ }
+}
+
+
+void Assembler::emit_code_relative_offset(Label* label) {
+ if (label->is_bound()) {
+ int32_t pos;
+ pos = label->pos() + Code::kHeaderSize - kHeapObjectTag;
+ emit(pos);
+ } else {
+ emit_disp(label, Displacement::CODE_RELATIVE);
+ }
+}
+
+void Assembler::emit_b(Immediate x) {
+ DCHECK(x.is_int8() || x.is_uint8());
+ uint8_t value = static_cast<uint8_t>(x.immediate());
+ *pc_++ = value;
+}
+
+void Assembler::emit_w(const Immediate& x) {
+ DCHECK(RelocInfo::IsNone(x.rmode_));
+ uint16_t value = static_cast<uint16_t>(x.immediate());
+ reinterpret_cast<uint16_t*>(pc_)[0] = value;
+ pc_ += sizeof(uint16_t);
+}
+
+
+Address Assembler::target_address_at(Address pc, Address constant_pool) {
+ return pc + sizeof(int32_t) + *reinterpret_cast<int32_t*>(pc);
+}
+
+
+void Assembler::set_target_address_at(Isolate* isolate, Address pc,
+ Address constant_pool, Address target,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK_IMPLIES(isolate == nullptr, icache_flush_mode == SKIP_ICACHE_FLUSH);
+ int32_t* p = reinterpret_cast<int32_t*>(pc);
+ *p = target - (pc + sizeof(int32_t));
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ Assembler::FlushICache(isolate, p, sizeof(int32_t));
+ }
+}
+
+Address Assembler::target_address_at(Address pc, Code* code) {
+ Address constant_pool = code ? code->constant_pool() : NULL;
+ return target_address_at(pc, constant_pool);
+}
+
+void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
+ Address target,
+ ICacheFlushMode icache_flush_mode) {
+ Address constant_pool = code ? code->constant_pool() : NULL;
+ set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
+}
+
+Address Assembler::target_address_from_return_address(Address pc) {
+ return pc - kCallTargetAddressOffset;
+}
+
+
+Displacement Assembler::disp_at(Label* L) {
+ return Displacement(long_at(L->pos()));
+}
+
+
+void Assembler::disp_at_put(Label* L, Displacement disp) {
+ long_at_put(L->pos(), disp.data());
+}
+
+
+void Assembler::emit_disp(Label* L, Displacement::Type type) {
+ Displacement disp(L, type);
+ L->link_to(pc_offset());
+ emit(static_cast<int>(disp.data()));
+}
+
+
+void Assembler::emit_near_disp(Label* L) {
+ byte disp = 0x00;
+ if (L->is_near_linked()) {
+ int offset = L->near_link_pos() - pc_offset();
+ DCHECK(is_int8(offset));
+ disp = static_cast<byte>(offset & 0xFF);
+ }
+ L->link_to(pc_offset(), Label::kNear);
+ *pc_++ = disp;
+}
+
+
+void Assembler::deserialization_set_target_internal_reference_at(
+ Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
+ Memory::Address_at(pc) = target;
+}
+
+
+void Operand::set_modrm(int mod, Register rm) {
+ DCHECK((mod & -4) == 0);
+ buf_[0] = mod << 6 | rm.code();
+ len_ = 1;
+}
+
+
+void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
+ DCHECK(len_ == 1);
+ DCHECK((scale & -4) == 0);
+ // Use SIB with no index register only for base esp.
+ DCHECK(!index.is(esp) || base.is(esp));
+ buf_[1] = scale << 6 | index.code() << 3 | base.code();
+ len_ = 2;
+}
+
+
+void Operand::set_disp8(int8_t disp) {
+ DCHECK(len_ == 1 || len_ == 2);
+ *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
+}
+
+
+void Operand::set_dispr(int32_t disp, RelocInfo::Mode rmode) {
+ DCHECK(len_ == 1 || len_ == 2);
+ int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
+ *p = disp;
+ len_ += sizeof(int32_t);
+ rmode_ = rmode;
+}
+
+Operand::Operand(Register reg) {
+ // reg
+ set_modrm(3, reg);
+}
+
+
+Operand::Operand(int32_t disp, RelocInfo::Mode rmode) {
+ // [disp/r]
+ set_modrm(0, ebp);
+ set_dispr(disp, rmode);
+}
+
+
+Operand::Operand(Immediate imm) {
+ // [disp/r]
+ set_modrm(0, ebp);
+ set_dispr(imm.immediate(), imm.rmode_);
+}
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_ASSEMBLER_X87_INL_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/codegen-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/codegen-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/codegen-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/codegen-x87.cc 2017-12-27 22:01:35.070961553 +0100
@@ -0,0 +1,381 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/x87/codegen-x87.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/codegen.h"
+#include "src/heap/heap.h"
+#include "src/macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+// -------------------------------------------------------------------------
+// Platform-specific RuntimeCallHelper functions.
+
+void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
+ masm->EnterFrame(StackFrame::INTERNAL);
+ DCHECK(!masm->has_frame());
+ masm->set_has_frame(true);
+}
+
+
+void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
+ masm->LeaveFrame(StackFrame::INTERNAL);
+ DCHECK(masm->has_frame());
+ masm->set_has_frame(false);
+}
+
+
+#define __ masm.
+
+
+UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
+ size_t actual_size;
+ // Allocate buffer in executable space.
+ byte* buffer =
+ static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
+ if (buffer == nullptr) return nullptr;
+
+ MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
+ CodeObjectRequired::kNo);
+ // Load double input into registers.
+ __ fld_d(MemOperand(esp, 4));
+ __ X87SetFPUCW(0x027F);
+ __ fsqrt();
+ __ X87SetFPUCW(0x037F);
+ __ Ret();
+
+ CodeDesc desc;
+ masm.GetCode(isolate, &desc);
+ DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));
+
+ Assembler::FlushICache(isolate, buffer, actual_size);
+ base::OS::ProtectCode(buffer, actual_size);
+ return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
+}
+
+
+// Helper functions for CreateMemMoveFunction.
+#undef __
+#define __ ACCESS_MASM(masm)
+
+enum Direction { FORWARD, BACKWARD };
+enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };
+
+
+void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
+ __ pop(esi);
+ __ pop(edi);
+ __ ret(0);
+}
+
+
+#undef __
+#define __ masm.
+
+
+class LabelConverter {
+ public:
+ explicit LabelConverter(byte* buffer) : buffer_(buffer) {}
+ int32_t address(Label* l) const {
+ return reinterpret_cast<int32_t>(buffer_) + l->pos();
+ }
+ private:
+ byte* buffer_;
+};
+
+
+MemMoveFunction CreateMemMoveFunction(Isolate* isolate) {
+ size_t actual_size;
+ // Allocate buffer in executable space.
+ byte* buffer =
+ static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
+ if (buffer == nullptr) return nullptr;
+ MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
+ CodeObjectRequired::kNo);
+ LabelConverter conv(buffer);
+
+ // Generated code is put into a fixed, unmovable buffer, and not into
+ // the V8 heap. We can't, and don't, refer to any relocatable addresses
+ // (e.g. the JavaScript nan-object).
+
+ // 32-bit C declaration function calls pass arguments on stack.
+
+ // Stack layout:
+ // esp[12]: Third argument, size.
+ // esp[8]: Second argument, source pointer.
+ // esp[4]: First argument, destination pointer.
+ // esp[0]: return address
+
+ const int kDestinationOffset = 1 * kPointerSize;
+ const int kSourceOffset = 2 * kPointerSize;
+ const int kSizeOffset = 3 * kPointerSize;
+
+ int stack_offset = 0; // Update if we change the stack height.
+
+ Label backward, backward_much_overlap;
+ Label forward_much_overlap, small_size, medium_size, pop_and_return;
+ __ push(edi);
+ __ push(esi);
+ stack_offset += 2 * kPointerSize;
+ Register dst = edi;
+ Register src = esi;
+ Register count = ecx;
+ __ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
+ __ mov(src, Operand(esp, stack_offset + kSourceOffset));
+ __ mov(count, Operand(esp, stack_offset + kSizeOffset));
+
+ __ cmp(dst, src);
+ __ j(equal, &pop_and_return);
+
+ // No SSE2.
+ Label forward;
+ __ cmp(count, 0);
+ __ j(equal, &pop_and_return);
+ __ cmp(dst, src);
+ __ j(above, &backward);
+ __ jmp(&forward);
+ {
+ // Simple forward copier.
+ Label forward_loop_1byte, forward_loop_4byte;
+ __ bind(&forward_loop_4byte);
+ __ mov(eax, Operand(src, 0));
+ __ sub(count, Immediate(4));
+ __ add(src, Immediate(4));
+ __ mov(Operand(dst, 0), eax);
+ __ add(dst, Immediate(4));
+ __ bind(&forward); // Entry point.
+ __ cmp(count, 3);
+ __ j(above, &forward_loop_4byte);
+ __ bind(&forward_loop_1byte);
+ __ cmp(count, 0);
+ __ j(below_equal, &pop_and_return);
+ __ mov_b(eax, Operand(src, 0));
+ __ dec(count);
+ __ inc(src);
+ __ mov_b(Operand(dst, 0), eax);
+ __ inc(dst);
+ __ jmp(&forward_loop_1byte);
+ }
+ {
+ // Simple backward copier.
+ Label backward_loop_1byte, backward_loop_4byte, entry_shortcut;
+ __ bind(&backward);
+ __ add(src, count);
+ __ add(dst, count);
+ __ cmp(count, 3);
+ __ j(below_equal, &entry_shortcut);
+
+ __ bind(&backward_loop_4byte);
+ __ sub(src, Immediate(4));
+ __ sub(count, Immediate(4));
+ __ mov(eax, Operand(src, 0));
+ __ sub(dst, Immediate(4));
+ __ mov(Operand(dst, 0), eax);
+ __ cmp(count, 3);
+ __ j(above, &backward_loop_4byte);
+ __ bind(&backward_loop_1byte);
+ __ cmp(count, 0);
+ __ j(below_equal, &pop_and_return);
+ __ bind(&entry_shortcut);
+ __ dec(src);
+ __ dec(count);
+ __ mov_b(eax, Operand(src, 0));
+ __ dec(dst);
+ __ mov_b(Operand(dst, 0), eax);
+ __ jmp(&backward_loop_1byte);
+ }
+
+ __ bind(&pop_and_return);
+ MemMoveEmitPopAndReturn(&masm);
+
+ CodeDesc desc;
+ masm.GetCode(&desc);
+ DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));
+ Assembler::FlushICache(isolate, buffer, actual_size);
+ base::OS::ProtectCode(buffer, actual_size);
+ // TODO(jkummerow): It would be nice to register this code creation event
+ // with the PROFILE / GDBJIT system.
+ return FUNCTION_CAST<MemMoveFunction>(buffer);
+}
+
+
+#undef __
+
+// -------------------------------------------------------------------------
+// Code generators
+
+#define __ ACCESS_MASM(masm)
+
+void StringCharLoadGenerator::Generate(MacroAssembler* masm,
+ Factory* factory,
+ Register string,
+ Register index,
+ Register result,
+ Label* call_runtime) {
+ Label indirect_string_loaded;
+ __ bind(&indirect_string_loaded);
+
+ // Fetch the instance type of the receiver into result register.
+ __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
+ __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
+
+ // We need special handling for indirect strings.
+ Label check_sequential;
+ __ test(result, Immediate(kIsIndirectStringMask));
+ __ j(zero, &check_sequential, Label::kNear);
+
+ // Dispatch on the indirect string shape: slice or cons.
+ Label cons_string, thin_string;
+ __ and_(result, Immediate(kStringRepresentationMask));
+ __ cmp(result, Immediate(kConsStringTag));
+ __ j(equal, &cons_string, Label::kNear);
+ __ cmp(result, Immediate(kThinStringTag));
+ __ j(equal, &thin_string, Label::kNear);
+
+ // Handle slices.
+ __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset));
+ __ SmiUntag(result);
+ __ add(index, result);
+ __ mov(string, FieldOperand(string, SlicedString::kParentOffset));
+ __ jmp(&indirect_string_loaded);
+
+ // Handle thin strings.
+ __ bind(&thin_string);
+ __ mov(string, FieldOperand(string, ThinString::kActualOffset));
+ __ jmp(&indirect_string_loaded);
+
+ // Handle cons strings.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ bind(&cons_string);
+ __ cmp(FieldOperand(string, ConsString::kSecondOffset),
+ Immediate(factory->empty_string()));
+ __ j(not_equal, call_runtime);
+ __ mov(string, FieldOperand(string, ConsString::kFirstOffset));
+ __ jmp(&indirect_string_loaded);
+
+ // Distinguish sequential and external strings. Only these two string
+ // representations can reach here (slices and flat cons strings have been
+ // reduced to the underlying sequential or external string).
+ Label seq_string;
+ __ bind(&check_sequential);
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ test(result, Immediate(kStringRepresentationMask));
+ __ j(zero, &seq_string, Label::kNear);
+
+ // Handle external strings.
+ Label one_byte_external, done;
+ if (FLAG_debug_code) {
+ // Assert that we do not have a cons or slice (indirect strings) here.
+ // Sequential strings have already been ruled out.
+ __ test(result, Immediate(kIsIndirectStringMask));
+ __ Assert(zero, kExternalStringExpectedButNotFound);
+ }
+ // Rule out short external strings.
+ STATIC_ASSERT(kShortExternalStringTag != 0);
+ __ test_b(result, Immediate(kShortExternalStringMask));
+ __ j(not_zero, call_runtime);
+ // Check encoding.
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ __ test_b(result, Immediate(kStringEncodingMask));
+ __ mov(result, FieldOperand(string, ExternalString::kResourceDataOffset));
+ __ j(not_equal, &one_byte_external, Label::kNear);
+ // Two-byte string.
+ __ movzx_w(result, Operand(result, index, times_2, 0));
+ __ jmp(&done, Label::kNear);
+ __ bind(&one_byte_external);
+ // One-byte string.
+ __ movzx_b(result, Operand(result, index, times_1, 0));
+ __ jmp(&done, Label::kNear);
+
+ // Dispatch on the encoding: one-byte or two-byte.
+ Label one_byte;
+ __ bind(&seq_string);
+ STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
+ __ test(result, Immediate(kStringEncodingMask));
+ __ j(not_zero, &one_byte, Label::kNear);
+
+ // Two-byte string.
+ // Load the two-byte character code into the result register.
+ __ movzx_w(result, FieldOperand(string,
+ index,
+ times_2,
+ SeqTwoByteString::kHeaderSize));
+ __ jmp(&done, Label::kNear);
+
+ // One-byte string.
+ // Load the byte into the result register.
+ __ bind(&one_byte);
+ __ movzx_b(result, FieldOperand(string,
+ index,
+ times_1,
+ SeqOneByteString::kHeaderSize));
+ __ bind(&done);
+}
+
+
+#undef __
+
+
+CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
+ USE(isolate);
+ DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
+ CodePatcher patcher(isolate, young_sequence_.start(),
+ young_sequence_.length());
+ patcher.masm()->push(ebp);
+ patcher.masm()->mov(ebp, esp);
+ patcher.masm()->push(esi);
+ patcher.masm()->push(edi);
+}
+
+
+#ifdef DEBUG
+bool CodeAgingHelper::IsOld(byte* candidate) const {
+ return *candidate == kCallOpcode;
+}
+#endif
+
+
+bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
+ bool result = isolate->code_aging_helper()->IsYoung(sequence);
+ DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
+ return result;
+}
+
+Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
+ if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;
+
+ sequence++; // Skip the kCallOpcode byte
+ Address target_address = sequence + *reinterpret_cast<int*>(sequence) +
+ Assembler::kCallTargetAddressOffset;
+ Code* stub = GetCodeFromTargetAddress(target_address);
+ return GetAgeOfCodeAgeStub(stub);
+}
+
+void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
+ Code::Age age) {
+ uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
+ if (age == kNoAgeCodeAge) {
+ isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
+ Assembler::FlushICache(isolate, sequence, young_length);
+ } else {
+ Code* stub = GetCodeAgeStub(isolate, age);
+ CodePatcher patcher(isolate, sequence, young_length);
+ patcher.masm()->call(stub->instruction_start(), RelocInfo::NONE32);
+ }
+}
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/codegen-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/codegen-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/codegen-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/codegen-x87.h 2017-12-25 17:42:57.221465559 +0100
@@ -0,0 +1,33 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_CODEGEN_X87_H_
+#define V8_X87_CODEGEN_X87_H_
+
+#include "src/macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+class StringCharLoadGenerator : public AllStatic {
+ public:
+ // Generates the code for handling different string types and loading the
+ // indexed character into |result|. We expect |index| as untagged input and
+ // |result| as untagged output.
+ static void Generate(MacroAssembler* masm,
+ Factory* factory,
+ Register string,
+ Register index,
+ Register result,
+ Label* call_runtime);
+
+ private:
+ DISALLOW_COPY_AND_ASSIGN(StringCharLoadGenerator);
+};
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_CODEGEN_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.cc 2017-12-28 01:57:08.188059423 +0100
@@ -0,0 +1,3423 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/code-stubs.h"
+#include "src/api-arguments.h"
+#include "src/base/bits.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/ic/handler-compiler.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/isolate.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/runtime/runtime.h"
+#include "src/x87/code-stubs-x87.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
+ __ pop(ecx);
+ __ mov(MemOperand(esp, eax, times_4, 0), edi);
+ __ push(edi);
+ __ push(ebx);
+ __ push(ecx);
+ __ add(eax, Immediate(3));
+ __ TailCallRuntime(Runtime::kNewArray);
+}
+
+
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
+ // We don't allow a GC during a store buffer overflow so there is no need to
+ // store the registers in any particular way, but we do have to store and
+ // restore them.
+ __ pushad();
+ if (save_doubles()) {
+ // Save FPU stat in m108byte.
+ __ sub(esp, Immediate(108));
+ __ fnsave(Operand(esp, 0));
+ }
+ const int argument_count = 1;
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(argument_count, ecx);
+ __ mov(Operand(esp, 0 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ __ CallCFunction(
+ ExternalReference::store_buffer_overflow_function(isolate()),
+ argument_count);
+ if (save_doubles()) {
+ // Restore FPU stat in m108byte.
+ __ frstor(Operand(esp, 0));
+ __ add(esp, Immediate(108));
+ }
+ __ popad();
+ __ ret(0);
+}
+
+
+class FloatingPointHelper : public AllStatic {
+ public:
+ enum ArgLocation {
+ ARGS_ON_STACK,
+ ARGS_IN_REGISTERS
+ };
+
+ // Code pattern for loading a floating point value. Input value must
+ // be either a smi or a heap number object (fp value). Requirements:
+ // operand in register number. Returns operand as floating point number
+ // on FPU stack.
+ static void LoadFloatOperand(MacroAssembler* masm, Register number);
+
+ // Test if operands are smi or number objects (fp). Requirements:
+ // operand_1 in eax, operand_2 in edx; falls through on float
+ // operands, jumps to the non_float label otherwise.
+ static void CheckFloatOperands(MacroAssembler* masm,
+ Label* non_float,
+ Register scratch);
+};
+
+
+void DoubleToIStub::Generate(MacroAssembler* masm) {
+ Register input_reg = this->source();
+ Register final_result_reg = this->destination();
+ DCHECK(is_truncating());
+
+ Label check_negative, process_64_bits, done, done_no_stash;
+
+ int double_offset = offset();
+
+ // Account for return address and saved regs if input is esp.
+ if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
+
+ MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
+ MemOperand exponent_operand(MemOperand(input_reg,
+ double_offset + kDoubleSize / 2));
+
+ Register scratch1;
+ {
+ Register scratch_candidates[3] = { ebx, edx, edi };
+ for (int i = 0; i < 3; i++) {
+ scratch1 = scratch_candidates[i];
+ if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
+ }
+ }
+ // Since we must use ecx for shifts below, use some other register (eax)
+ // to calculate the result if ecx is the requested return register.
+ Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
+ // Save ecx if it isn't the return register and therefore volatile, or if it
+ // is the return register, then save the temp register we use in its stead for
+ // the result.
+ Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
+ __ push(scratch1);
+ __ push(save_reg);
+
+ bool stash_exponent_copy = !input_reg.is(esp);
+ __ mov(scratch1, mantissa_operand);
+ __ mov(ecx, exponent_operand);
+ if (stash_exponent_copy) __ push(ecx);
+
+ __ and_(ecx, HeapNumber::kExponentMask);
+ __ shr(ecx, HeapNumber::kExponentShift);
+ __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
+ __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
+ __ j(below, &process_64_bits);
+
+ // Result is entirely in lower 32-bits of mantissa
+ int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
+ __ sub(ecx, Immediate(delta));
+ __ xor_(result_reg, result_reg);
+ __ cmp(ecx, Immediate(31));
+ __ j(above, &done);
+ __ shl_cl(scratch1);
+ __ jmp(&check_negative);
+
+ __ bind(&process_64_bits);
+ // Result must be extracted from shifted 32-bit mantissa
+ __ sub(ecx, Immediate(delta));
+ __ neg(ecx);
+ if (stash_exponent_copy) {
+ __ mov(result_reg, MemOperand(esp, 0));
+ } else {
+ __ mov(result_reg, exponent_operand);
+ }
+ __ and_(result_reg,
+ Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
+ __ add(result_reg,
+ Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
+ __ shrd_cl(scratch1, result_reg);
+ __ shr_cl(result_reg);
+ __ test(ecx, Immediate(32));
+ {
+ Label skip_mov;
+ __ j(equal, &skip_mov, Label::kNear);
+ __ mov(scratch1, result_reg);
+ __ bind(&skip_mov);
+ }
+
+ // If the double was negative, negate the integer result.
+ __ bind(&check_negative);
+ __ mov(result_reg, scratch1);
+ __ neg(result_reg);
+ if (stash_exponent_copy) {
+ __ cmp(MemOperand(esp, 0), Immediate(0));
+ } else {
+ __ cmp(exponent_operand, Immediate(0));
+ }
+ {
+ Label skip_mov;
+ __ j(less_equal, &skip_mov, Label::kNear);
+ __ mov(result_reg, scratch1);
+ __ bind(&skip_mov);
+ }
+
+ // Restore registers
+ __ bind(&done);
+ if (stash_exponent_copy) {
+ __ add(esp, Immediate(kDoubleSize / 2));
+ }
+ __ bind(&done_no_stash);
+ if (!final_result_reg.is(result_reg)) {
+ DCHECK(final_result_reg.is(ecx));
+ __ mov(final_result_reg, result_reg);
+ }
+ __ pop(save_reg);
+ __ pop(scratch1);
+ __ ret(0);
+}
+
+
+void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
+ Register number) {
+ Label load_smi, done;
+
+ __ JumpIfSmi(number, &load_smi, Label::kNear);
+ __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&load_smi);
+ __ SmiUntag(number);
+ __ push(number);
+ __ fild_s(Operand(esp, 0));
+ __ pop(number);
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
+ Label* non_float,
+ Register scratch) {
+ Label test_other, done;
+ // Test if both operands are floats or smi -> scratch=k_is_float;
+ // Otherwise scratch = k_not_float.
+ __ JumpIfSmi(edx, &test_other, Label::kNear);
+ __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(scratch, factory->heap_number_map());
+ __ j(not_equal, non_float); // argument in edx is not a number -> NaN
+
+ __ bind(&test_other);
+ __ JumpIfSmi(eax, &done, Label::kNear);
+ __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(scratch, factory->heap_number_map());
+ __ j(not_equal, non_float); // argument in eax is not a number -> NaN
+
+ // Fall-through: Both operands are numbers.
+ __ bind(&done);
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+ const Register scratch = ecx;
+
+ // Load the double_exponent into x87 FPU
+ __ fld_d(Operand(esp, 0 * kDoubleSize + 4));
+ // Load the double_base into x87 FPU
+ __ fld_d(Operand(esp, 1 * kDoubleSize + 4));
+
+ // Call ieee754 runtime directly.
+ {
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(4, scratch);
+ // Put the double_base parameter in call stack
+ __ fstp_d(Operand(esp, 0 * kDoubleSize));
+ // Put the double_exponent parameter in call stack
+ __ fstp_d(Operand(esp, 1 * kDoubleSize));
+ __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
+ 4);
+ }
+ // Return value is in st(0) on ia32.
+ __ ret(0);
+}
+
+
+static int NegativeComparisonResult(Condition cc) {
+ DCHECK(cc != equal);
+ DCHECK((cc == less) || (cc == less_equal)
+ || (cc == greater) || (cc == greater_equal));
+ return (cc == greater || cc == greater_equal) ? LESS : GREATER;
+}
+
+
+static void CheckInputType(MacroAssembler* masm, Register input,
+ CompareICState::State expected, Label* fail) {
+ Label ok;
+ if (expected == CompareICState::SMI) {
+ __ JumpIfNotSmi(input, fail);
+ } else if (expected == CompareICState::NUMBER) {
+ __ JumpIfSmi(input, &ok);
+ __ cmp(FieldOperand(input, HeapObject::kMapOffset),
+ Immediate(masm->isolate()->factory()->heap_number_map()));
+ __ j(not_equal, fail);
+ }
+ // We could be strict about internalized/non-internalized here, but as long as
+ // hydrogen doesn't care, the stub doesn't have to care either.
+ __ bind(&ok);
+}
+
+
+static void BranchIfNotInternalizedString(MacroAssembler* masm,
+ Label* label,
+ Register object,
+ Register scratch) {
+ __ JumpIfSmi(object, label);
+ __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
+ __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+ __ j(not_zero, label);
+}
+
+
+void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
+ Label runtime_call, check_unequal_objects;
+ Condition cc = GetCondition();
+
+ Label miss;
+ CheckInputType(masm, edx, left(), &miss);
+ CheckInputType(masm, eax, right(), &miss);
+
+ // Compare two smis.
+ Label non_smi, smi_done;
+ __ mov(ecx, edx);
+ __ or_(ecx, eax);
+ __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
+ __ sub(edx, eax); // Return on the result of the subtraction.
+ __ j(no_overflow, &smi_done, Label::kNear);
+ __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
+ __ bind(&smi_done);
+ __ mov(eax, edx);
+ __ ret(0);
+ __ bind(&non_smi);
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Identical objects can be compared fast, but there are some tricky cases
+ // for NaN and undefined.
+ Label generic_heap_number_comparison;
+ {
+ Label not_identical;
+ __ cmp(eax, edx);
+ __ j(not_equal, &not_identical);
+
+ if (cc != equal) {
+ // Check for undefined. undefined OP undefined is false even though
+ // undefined == undefined.
+ __ cmp(edx, isolate()->factory()->undefined_value());
+ Label check_for_nan;
+ __ j(not_equal, &check_for_nan, Label::kNear);
+ __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
+ __ ret(0);
+ __ bind(&check_for_nan);
+ }
+
+ // Test for NaN. Compare heap numbers in a general way,
+ // to handle NaNs correctly.
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->heap_number_map()));
+ __ j(equal, &generic_heap_number_comparison, Label::kNear);
+ if (cc != equal) {
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
+ // Call runtime on identical JSObjects. Otherwise return equal.
+ __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
+ __ j(above_equal, &runtime_call, Label::kFar);
+ // Call runtime on identical symbols since we need to throw a TypeError.
+ __ cmpb(ecx, Immediate(SYMBOL_TYPE));
+ __ j(equal, &runtime_call, Label::kFar);
+ }
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+
+ __ bind(&not_identical);
+ }
+
+ // Strict equality can quickly decide whether objects are equal.
+ // Non-strict object equality is slower, so it is handled later in the stub.
+ if (cc == equal && strict()) {
+ Label slow; // Fallthrough label.
+ Label not_smis;
+ // If we're doing a strict equality comparison, we don't have to do
+ // type conversion, so we generate code to do fast comparison for objects
+ // and oddballs. Non-smi numbers and strings still go through the usual
+ // slow-case code.
+ // If either is a Smi (we know that not both are), then they can only
+ // be equal if the other is a HeapNumber. If so, use the slow case.
+ STATIC_ASSERT(kSmiTag == 0);
+ DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
+ __ mov(ecx, Immediate(kSmiTagMask));
+ __ and_(ecx, eax);
+ __ test(ecx, edx);
+ __ j(not_zero, &not_smis, Label::kNear);
+ // One operand is a smi.
+
+ // Check whether the non-smi is a heap number.
+ STATIC_ASSERT(kSmiTagMask == 1);
+ // ecx still holds eax & kSmiTag, which is either zero or one.
+ __ sub(ecx, Immediate(0x01));
+ __ mov(ebx, edx);
+ __ xor_(ebx, eax);
+ __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
+ __ xor_(ebx, eax);
+ // if eax was smi, ebx is now edx, else eax.
+
+ // Check if the non-smi operand is a heap number.
+ __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
+ Immediate(isolate()->factory()->heap_number_map()));
+ // If heap number, handle it in the slow case.
+ __ j(equal, &slow, Label::kNear);
+ // Return non-equal (ebx is not zero)
+ __ mov(eax, ebx);
+ __ ret(0);
+
+ __ bind(&not_smis);
+ // If either operand is a JSObject or an oddball value, then they are not
+ // equal since their pointers are different
+ // There is no test for undetectability in strict equality.
+
+ // Get the type of the first operand.
+ // If the first object is a JS object, we have done pointer comparison.
+ Label first_non_object;
+ STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(below, &first_non_object, Label::kNear);
+
+ // Return non-zero (eax is not zero)
+ Label return_not_equal;
+ STATIC_ASSERT(kHeapObjectTag != 0);
+ __ bind(&return_not_equal);
+ __ ret(0);
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ CmpInstanceType(ecx, ODDBALL_TYPE);
+ __ j(equal, &return_not_equal);
+
+ __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(above_equal, &return_not_equal);
+
+ // Check for oddballs: true, false, null, undefined.
+ __ CmpInstanceType(ecx, ODDBALL_TYPE);
+ __ j(equal, &return_not_equal);
+
+ // Fall through to the general case.
+ __ bind(&slow);
+ }
+
+ // Generate the number comparison code.
+ Label non_number_comparison;
+ Label unordered;
+ __ bind(&generic_heap_number_comparison);
+ FloatingPointHelper::CheckFloatOperands(
+ masm, &non_number_comparison, ebx);
+ FloatingPointHelper::LoadFloatOperand(masm, eax);
+ FloatingPointHelper::LoadFloatOperand(masm, edx);
+ __ FCmp();
+
+ // Don't base result on EFLAGS when a NaN is involved.
+ __ j(parity_even, &unordered, Label::kNear);
+
+ Label below_label, above_label;
+ // Return a result of -1, 0, or 1, based on EFLAGS.
+ __ j(below, &below_label, Label::kNear);
+ __ j(above, &above_label, Label::kNear);
+
+ __ Move(eax, Immediate(0));
+ __ ret(0);
+
+ __ bind(&below_label);
+ __ mov(eax, Immediate(Smi::FromInt(-1)));
+ __ ret(0);
+
+ __ bind(&above_label);
+ __ mov(eax, Immediate(Smi::FromInt(1)));
+ __ ret(0);
+
+ // If one of the numbers was NaN, then the result is always false.
+ // The cc is never not-equal.
+ __ bind(&unordered);
+ DCHECK(cc != not_equal);
+ if (cc == less || cc == less_equal) {
+ __ mov(eax, Immediate(Smi::FromInt(1)));
+ } else {
+ __ mov(eax, Immediate(Smi::FromInt(-1)));
+ }
+ __ ret(0);
+
+ // The number comparison code did not provide a valid result.
+ __ bind(&non_number_comparison);
+
+ // Fast negative check for internalized-to-internalized equality.
+ Label check_for_strings;
+ if (cc == equal) {
+ BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
+ BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
+
+ // We've already checked for object identity, so if both operands
+ // are internalized they aren't equal. Register eax already holds a
+ // non-zero value, which indicates not equal, so just return.
+ __ ret(0);
+ }
+
+ __ bind(&check_for_strings);
+
+ __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
+ &check_unequal_objects);
+
+ // Inline comparison of one-byte strings.
+ if (cc == equal) {
+ StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
+ } else {
+ StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
+ edi);
+ }
+#ifdef DEBUG
+ __ Abort(kUnexpectedFallThroughFromStringComparison);
+#endif
+
+ __ bind(&check_unequal_objects);
+ if (cc == equal && !strict()) {
+ // Non-strict equality. Objects are unequal if
+ // they are both JSObjects and not undetectable,
+ // and their pointers are different.
+ Label return_equal, return_unequal, undetectable;
+ // At most one is a smi, so we can test for smi by adding the two.
+ // A smi plus a heap object has the low bit set, a heap object plus
+ // a heap object has the low bit clear.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagMask == 1);
+ __ lea(ecx, Operand(eax, edx, times_1, 0));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(not_zero, &runtime_call);
+
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
+
+ __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ __ j(not_zero, &undetectable, Label::kNear);
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ __ j(not_zero, &return_unequal, Label::kNear);
+
+ __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
+ __ j(below, &runtime_call, Label::kNear);
+ __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
+ __ j(below, &runtime_call, Label::kNear);
+
+ __ bind(&return_unequal);
+ // Return non-equal by returning the non-zero object pointer in eax.
+ __ ret(0); // eax, edx were pushed
+
+ __ bind(&undetectable);
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ __ j(zero, &return_unequal, Label::kNear);
+
+ // If both sides are JSReceivers, then the result is false according to
+ // the HTML specification, which says that only comparisons with null or
+ // undefined are affected by special casing for document.all.
+ __ CmpInstanceType(ebx, ODDBALL_TYPE);
+ __ j(zero, &return_equal, Label::kNear);
+ __ CmpInstanceType(ecx, ODDBALL_TYPE);
+ __ j(not_zero, &return_unequal, Label::kNear);
+
+ __ bind(&return_equal);
+ __ Move(eax, Immediate(EQUAL));
+ __ ret(0); // eax, edx were pushed
+ }
+ __ bind(&runtime_call);
+
+ if (cc == equal) {
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(esi);
+ __ Call(strict() ? isolate()->builtins()->StrictEqual()
+ : isolate()->builtins()->Equal(),
+ RelocInfo::CODE_TARGET);
+ __ Pop(esi);
+ }
+ // Turn true into 0 and false into some non-zero value.
+ STATIC_ASSERT(EQUAL == 0);
+ __ sub(eax, Immediate(isolate()->factory()->true_value()));
+ __ Ret();
+ } else {
+ // Push arguments below the return address.
+ __ pop(ecx);
+ __ push(edx);
+ __ push(eax);
+ __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
+
+ // Restore return address on the stack.
+ __ push(ecx);
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ TailCallRuntime(Runtime::kCompare);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
+ // eax : number of arguments to the construct function
+ // ebx : feedback vector
+ // edx : slot in feedback vector (Smi)
+ // edi : the function to call
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Number-of-arguments register must be smi-tagged to call out.
+ __ SmiTag(eax);
+ __ push(eax);
+ __ push(edi);
+ __ push(edx);
+ __ push(ebx);
+ __ push(esi);
+
+ __ CallStub(stub);
+
+ __ pop(esi);
+ __ pop(ebx);
+ __ pop(edx);
+ __ pop(edi);
+ __ pop(eax);
+ __ SmiUntag(eax);
+ }
+}
+
+
+static void GenerateRecordCallTarget(MacroAssembler* masm) {
+ // Cache the called function in a feedback vector slot. Cache states
+ // are uninitialized, monomorphic (indicated by a JSFunction), and
+ // megamorphic.
+ // eax : number of arguments to the construct function
+ // ebx : feedback vector
+ // edx : slot in feedback vector (Smi)
+ // edi : the function to call
+ Isolate* isolate = masm->isolate();
+ Label initialize, done, miss, megamorphic, not_array_function;
+
+ // Load the cache state into ecx.
+ __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+
+ // A monomorphic cache hit or an already megamorphic state: invoke the
+ // function without changing the state.
+ // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
+ // at this position in a symbol (see static asserts in feedback-vector.h).
+ Label check_allocation_site;
+ __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
+ __ j(equal, &done, Label::kFar);
+ __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
+ __ j(equal, &done, Label::kFar);
+ __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
+ Heap::kWeakCellMapRootIndex);
+ __ j(not_equal, &check_allocation_site);
+
+ // If the weak cell is cleared, we have a new chance to become monomorphic.
+ __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
+ __ jmp(&megamorphic);
+
+ __ bind(&check_allocation_site);
+ // If we came here, we need to see if we are the array function.
+ // If we didn't have a matching function, and we didn't find the megamorph
+ // sentinel, then we have in the slot either some other function or an
+ // AllocationSite.
+ __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
+ __ j(not_equal, &miss);
+
+ // Make sure the function is the Array() function
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+ __ cmp(edi, ecx);
+ __ j(not_equal, &megamorphic);
+ __ jmp(&done, Label::kFar);
+
+ __ bind(&miss);
+
+ // A monomorphic miss (i.e, here the cache is not uninitialized) goes
+ // megamorphic.
+ __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
+ __ j(equal, &initialize);
+ // MegamorphicSentinel is an immortal immovable object (undefined) so no
+ // write-barrier is needed.
+ __ bind(&megamorphic);
+ __ mov(
+ FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
+ Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
+ __ jmp(&done, Label::kFar);
+
+ // An uninitialized cache is patched with the function or sentinel to
+ // indicate the ElementsKind if function is the Array constructor.
+ __ bind(&initialize);
+ // Make sure the function is the Array() function
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+ __ cmp(edi, ecx);
+ __ j(not_equal, &not_array_function);
+
+ // The target function is the Array constructor,
+ // Create an AllocationSite if we don't already have it, store it in the
+ // slot.
+ CreateAllocationSiteStub create_stub(isolate);
+ CallStubInRecordCallTarget(masm, &create_stub);
+ __ jmp(&done);
+
+ __ bind(&not_array_function);
+ CreateWeakCellStub weak_cell_stub(isolate);
+ CallStubInRecordCallTarget(masm, &weak_cell_stub);
+
+ __ bind(&done);
+ // Increment the call count for all function calls.
+ __ add(FieldOperand(ebx, edx, times_half_pointer_size,
+ FixedArray::kHeaderSize + kPointerSize),
+ Immediate(Smi::FromInt(1)));
+}
+
+
+void CallConstructStub::Generate(MacroAssembler* masm) {
+ // eax : number of arguments
+ // ebx : feedback vector
+ // edx : slot in feedback vector (Smi, for RecordCallTarget)
+ // edi : constructor function
+
+ Label non_function;
+ // Check that function is not a smi.
+ __ JumpIfSmi(edi, &non_function);
+ // Check that function is a JSFunction.
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+ __ j(not_equal, &non_function);
+
+ GenerateRecordCallTarget(masm);
+
+ Label feedback_register_initialized;
+ // Put the AllocationSite from the feedback vector into ebx, or undefined.
+ __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+ Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
+ __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
+ __ j(equal, &feedback_register_initialized);
+ __ mov(ebx, isolate()->factory()->undefined_value());
+ __ bind(&feedback_register_initialized);
+
+ __ AssertUndefinedOrAllocationSite(ebx);
+
+ // Pass new target to construct stub.
+ __ mov(edx, edi);
+
+ // Tail call to the function-specific construct stub (still in the caller
+ // context at this point).
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
+ __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
+ __ jmp(ecx);
+
+ __ bind(&non_function);
+ __ mov(edx, edi);
+ __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
+}
+
+static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector,
+ Register slot) {
+ __ add(FieldOperand(feedback_vector, slot, times_half_pointer_size,
+ FixedArray::kHeaderSize + kPointerSize),
+ Immediate(Smi::FromInt(1)));
+}
+
+void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
+ // eax - number of arguments
+ // edi - function
+ // edx - slot id
+ // ebx - vector
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+ __ cmp(edi, ecx);
+ __ j(not_equal, miss);
+
+ // Reload ecx.
+ __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+
+ // Increment the call count for monomorphic function calls.
+ IncrementCallCount(masm, ebx, edx);
+
+ __ mov(ebx, ecx);
+ __ mov(edx, edi);
+ ArrayConstructorStub stub(masm->isolate());
+ __ TailCallStub(&stub);
+
+ // Unreachable.
+}
+
+
+void CallICStub::Generate(MacroAssembler* masm) {
+ // edi - number of arguments
+ // edi - function
+ // edx - slot id
+ // ebx - vector
+ Isolate* isolate = masm->isolate();
+ Label extra_checks_or_miss, call, call_function, call_count_incremented;
+
+ // The checks. First, does edi match the recorded monomorphic target?
+ __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+
+ // We don't know that we have a weak cell. We might have a private symbol
+ // or an AllocationSite, but the memory is safe to examine.
+ // AllocationSite::kTransitionInfoOrBoilerplateOffset - contains a Smi or
+ // pointer to FixedArray. WeakCell::kValueOffset - contains a JSFunction or
+ // Smi(0) Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
+ // computed, meaning that it can't appear to be a pointer. If the low bit is
+ // 0, then hash is computed, but the 0 bit prevents the field from appearing
+ // to be a pointer.
+ STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
+ STATIC_ASSERT(AllocationSite::kTransitionInfoOrBoilerplateOffset ==
+ WeakCell::kValueOffset &&
+ WeakCell::kValueOffset == Symbol::kHashFieldSlot);
+
+ __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
+ __ j(not_equal, &extra_checks_or_miss);
+
+ // The compare above could have been a SMI/SMI comparison. Guard against this
+ // convincing us that we have a monomorphic JSFunction.
+ __ JumpIfSmi(edi, &extra_checks_or_miss);
+
+ __ bind(&call_function);
+
+ // Increment the call count for monomorphic function calls.
+ IncrementCallCount(masm, ebx, edx);
+
+ __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
+ tail_call_mode()),
+ RelocInfo::CODE_TARGET);
+
+ __ bind(&extra_checks_or_miss);
+ Label uninitialized, miss, not_allocation_site;
+
+ __ cmp(ecx, Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
+ __ j(equal, &call);
+
+ // Check if we have an allocation site.
+ __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
+ Heap::kAllocationSiteMapRootIndex);
+ __ j(not_equal, &not_allocation_site);
+
+ // We have an allocation site.
+ HandleArrayCase(masm, &miss);
+
+ __ bind(&not_allocation_site);
+
+ // The following cases attempt to handle MISS cases without going to the
+ // runtime.
+ if (FLAG_trace_ic) {
+ __ jmp(&miss);
+ }
+
+ __ cmp(ecx, Immediate(FeedbackVector::UninitializedSentinel(isolate)));
+ __ j(equal, &uninitialized);
+
+ // We are going megamorphic. If the feedback is a JSFunction, it is fine
+ // to handle it here. More complex cases are dealt with in the runtime.
+ __ AssertNotSmi(ecx);
+ __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
+ __ j(not_equal, &miss);
+ __ mov(
+ FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
+ Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
+
+ __ bind(&call);
+
+ // Increment the call count for megamorphic function calls.
+ IncrementCallCount(masm, ebx, edx);
+
+ __ bind(&call_count_incremented);
+
+ __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
+ RelocInfo::CODE_TARGET);
+
+ __ bind(&uninitialized);
+
+ // We are going monomorphic, provided we actually have a JSFunction.
+ __ JumpIfSmi(edi, &miss);
+
+ // Goto miss case if we do not have a function.
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+ __ j(not_equal, &miss);
+
+ // Make sure the function is not the Array() function, which requires special
+ // behavior on MISS.
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
+ __ cmp(edi, ecx);
+ __ j(equal, &miss);
+
+ // Make sure the function belongs to the same native context.
+ __ mov(ecx, FieldOperand(edi, JSFunction::kContextOffset));
+ __ mov(ecx, ContextOperand(ecx, Context::NATIVE_CONTEXT_INDEX));
+ __ cmp(ecx, NativeContextOperand());
+ __ j(not_equal, &miss);
+
+ // Store the function. Use a stub since we need a frame for allocation.
+ // eax - number of arguments
+ // ebx - vector
+ // edx - slot
+ // edi - function
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ CreateWeakCellStub create_stub(isolate);
+ __ SmiTag(eax);
+ __ push(eax);
+ __ push(ebx);
+ __ push(edx);
+ __ push(edi);
+ __ push(esi);
+ __ CallStub(&create_stub);
+ __ pop(esi);
+ __ pop(edi);
+ __ pop(edx);
+ __ pop(ebx);
+ __ pop(eax);
+ __ SmiUntag(eax);
+ }
+
+ __ jmp(&call_function);
+
+ // We are here because tracing is on or we encountered a MISS case we can't
+ // handle here.
+ __ bind(&miss);
+ GenerateMiss(masm);
+
+ __ jmp(&call_count_incremented);
+
+ // Unreachable
+ __ int3();
+}
+
+
+void CallICStub::GenerateMiss(MacroAssembler* masm) {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Preserve the number of arguments.
+ __ SmiTag(eax);
+ __ push(eax);
+
+ // Push the function and feedback info.
+ __ push(edi);
+ __ push(ebx);
+ __ push(edx);
+
+ // Call the entry.
+ __ CallRuntime(Runtime::kCallIC_Miss);
+
+ // Move result to edi and exit the internal frame.
+ __ mov(edi, eax);
+
+ // Restore number of arguments.
+ __ pop(eax);
+ __ SmiUntag(eax);
+}
+
+
+bool CEntryStub::NeedsImmovableCode() {
+ return false;
+}
+
+
+void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
+ CEntryStub::GenerateAheadOfTime(isolate);
+ StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
+ // It is important that the store buffer overflow stubs are generated first.
+ CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
+ CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
+ CreateWeakCellStub::GenerateAheadOfTime(isolate);
+ StoreFastElementStub::GenerateAheadOfTime(isolate);
+}
+
+
+void CodeStub::GenerateFPStubs(Isolate* isolate) {
+ CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
+ // Stubs might already be in the snapshot, detect that and don't regenerate,
+ // which would lead to code stub initialization state being messed up.
+ Code* save_doubles_code;
+ if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
+ save_doubles_code = *(save_doubles.GetCode());
+ }
+}
+
+
+void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
+ CEntryStub stub(isolate, 1, kDontSaveFPRegs);
+ stub.GetCode();
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+ // eax: number of arguments including receiver
+ // ebx: pointer to C function (C callee-saved)
+ // ebp: frame pointer (restored after C call)
+ // esp: stack pointer (restored after C call)
+ // esi: current context (C callee-saved)
+ // edi: JS function of the caller (C callee-saved)
+ //
+ // If argv_in_register():
+ // ecx: pointer to the first argument
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ // Reserve space on the stack for the three arguments passed to the call. If
+ // result size is greater than can be returned in registers, also reserve
+ // space for the hidden argument for the result location, and space for the
+ // result itself.
+ int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ if (argv_in_register()) {
+ DCHECK(!save_doubles());
+ DCHECK(!is_builtin_exit());
+ __ EnterApiExitFrame(arg_stack_space);
+
+ // Move argc and argv into the correct registers.
+ __ mov(esi, ecx);
+ __ mov(edi, eax);
+ } else {
+ __ EnterExitFrame(
+ arg_stack_space, save_doubles(),
+ is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
+ }
+
+ // ebx: pointer to C function (C callee-saved)
+ // ebp: frame pointer (restored after C call)
+ // esp: stack pointer (restored after C call)
+ // edi: number of arguments including receiver (C callee-saved)
+ // esi: pointer to the first argument (C callee-saved)
+
+ // Result returned in eax, or eax+edx if result size is 2.
+
+ // Check stack alignment.
+ if (FLAG_debug_code) {
+ __ CheckStackAlignment();
+ }
+ // Call C function.
+ if (result_size() <= 2) {
+ __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
+ __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ } else {
+ DCHECK_EQ(3, result_size());
+ // Pass a pointer to the result location as the first argument.
+ __ lea(eax, Operand(esp, 4 * kPointerSize));
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+ __ mov(Operand(esp, 1 * kPointerSize), edi); // argc.
+ __ mov(Operand(esp, 2 * kPointerSize), esi); // argv.
+ __ mov(Operand(esp, 3 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ }
+ __ call(ebx);
+
+ if (result_size() > 2) {
+ DCHECK_EQ(3, result_size());
+#ifndef _WIN32
+ // Restore the "hidden" argument on the stack which was popped by caller.
+ __ sub(esp, Immediate(kPointerSize));
+#endif
+ // Read result values stored on stack. Result is stored above the arguments.
+ __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
+ __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
+ __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
+ }
+ // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
+
+ // Check result for exception sentinel.
+ Label exception_returned;
+ __ cmp(eax, isolate()->factory()->exception());
+ __ j(equal, &exception_returned);
+
+ // Check that there is no pending exception, otherwise we
+ // should have returned the exception sentinel.
+ if (FLAG_debug_code) {
+ __ push(edx);
+ __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
+ Label okay;
+ ExternalReference pending_exception_address(
+ IsolateAddressId::kPendingExceptionAddress, isolate());
+ __ cmp(edx, Operand::StaticVariable(pending_exception_address));
+ // Cannot use check here as it attempts to generate call into runtime.
+ __ j(equal, &okay, Label::kNear);
+ __ int3();
+ __ bind(&okay);
+ __ pop(edx);
+ }
+
+ // Exit the JavaScript to C++ exit frame.
+ __ LeaveExitFrame(save_doubles(), !argv_in_register());
+ __ ret(0);
+
+ // Handling of exception.
+ __ bind(&exception_returned);
+
+ ExternalReference pending_handler_context_address(
+ IsolateAddressId::kPendingHandlerContextAddress, isolate());
+ ExternalReference pending_handler_code_address(
+ IsolateAddressId::kPendingHandlerCodeAddress, isolate());
+ ExternalReference pending_handler_offset_address(
+ IsolateAddressId::kPendingHandlerOffsetAddress, isolate());
+ ExternalReference pending_handler_fp_address(
+ IsolateAddressId::kPendingHandlerFPAddress, isolate());
+ ExternalReference pending_handler_sp_address(
+ IsolateAddressId::kPendingHandlerSPAddress, isolate());
+
+ // Ask the runtime for help to determine the handler. This will set eax to
+ // contain the current pending exception, don't clobber it.
+ ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
+ isolate());
+ {
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ PrepareCallCFunction(3, eax);
+ __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ __ CallCFunction(find_handler, 3);
+ }
+
+ // Retrieve the handler context, SP and FP.
+ __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
+ __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
+ __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
+
+ // If the handler is a JS frame, restore the context to the frame. Note that
+ // the context will be set to (esi == 0) for non-JS frames.
+ Label skip;
+ __ test(esi, esi);
+ __ j(zero, &skip, Label::kNear);
+ __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
+ __ bind(&skip);
+
+ // Compute the handler entry address and jump to it.
+ __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
+ __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
+ // Check whether it's a turbofanned exception handler code before jump to it.
+ Label not_turbo;
+ __ push(eax);
+ __ mov(eax, Operand(edi, Code::kKindSpecificFlags1Offset - kHeapObjectTag));
+ __ and_(eax, Immediate(1 << Code::kIsTurbofannedBit));
+ __ j(zero, &not_turbo);
+ __ fninit();
+ __ fld1();
+ __ bind(&not_turbo);
+ __ pop(eax);
+ __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
+ __ jmp(edi);
+}
+
+
+void JSEntryStub::Generate(MacroAssembler* masm) {
+ Label invoke, handler_entry, exit;
+ Label not_outermost_js, not_outermost_js_2;
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ // Set up frame.
+ __ push(ebp);
+ __ mov(ebp, esp);
+
+ // Push marker in two places.
+ int marker = type();
+ __ push(Immediate(Smi::FromInt(marker))); // marker
+ ExternalReference context_address(IsolateAddressId::kContextAddress,
+ isolate());
+ __ push(Operand::StaticVariable(context_address)); // context
+ // Save callee-saved registers (C calling conventions).
+ __ push(edi);
+ __ push(esi);
+ __ push(ebx);
+
+ // Save copies of the top frame descriptor on the stack.
+ ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate());
+ __ push(Operand::StaticVariable(c_entry_fp));
+
+ // If this is the outermost JS call, set js_entry_sp value.
+ ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
+ __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
+ __ j(not_equal, &not_outermost_js, Label::kNear);
+ __ mov(Operand::StaticVariable(js_entry_sp), ebp);
+ __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+ __ jmp(&invoke, Label::kNear);
+ __ bind(&not_outermost_js);
+ __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
+
+ // Jump to a faked try block that does the invoke, with a faked catch
+ // block that sets the pending exception.
+ __ jmp(&invoke);
+ __ bind(&handler_entry);
+ handler_offset_ = handler_entry.pos();
+ // Caught exception: Store result (exception) in the pending exception
+ // field in the JSEnv and return a failure sentinel.
+ ExternalReference pending_exception(
+ IsolateAddressId::kPendingExceptionAddress, isolate());
+ __ mov(Operand::StaticVariable(pending_exception), eax);
+ __ mov(eax, Immediate(isolate()->factory()->exception()));
+ __ jmp(&exit);
+
+ // Invoke: Link this frame into the handler chain.
+ __ bind(&invoke);
+ __ PushStackHandler();
+
+ // Fake a receiver (NULL).
+ __ push(Immediate(0)); // receiver
+
+ // Invoke the function by calling through JS entry trampoline builtin and
+ // pop the faked function when we return. Notice that we cannot store a
+ // reference to the trampoline code directly in this stub, because the
+ // builtin stubs may not have been generated yet.
+ if (type() == StackFrame::ENTRY_CONSTRUCT) {
+ ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+ isolate());
+ __ mov(edx, Immediate(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
+ __ mov(edx, Immediate(entry));
+ }
+ __ mov(edx, Operand(edx, 0)); // deref address
+ __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
+ __ call(edx);
+
+ // Unlink this frame from the handler chain.
+ __ PopStackHandler();
+
+ __ bind(&exit);
+ // Check if the current stack frame is marked as the outermost JS frame.
+ __ pop(ebx);
+ __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+ __ j(not_equal, &not_outermost_js_2);
+ __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
+ __ bind(&not_outermost_js_2);
+
+ // Restore the top frame descriptor from the stack.
+ __ pop(Operand::StaticVariable(
+ ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())));
+
+ // Restore callee-saved registers (C calling conventions).
+ __ pop(ebx);
+ __ pop(esi);
+ __ pop(edi);
+ __ add(esp, Immediate(2 * kPointerSize)); // remove markers
+
+ // Restore frame pointer and return.
+ __ pop(ebp);
+ __ ret(0);
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharCodeAtGenerator
+
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+ // If the receiver is a smi trigger the non-string case.
+ if (check_mode_ == RECEIVER_IS_UNKNOWN) {
+ __ JumpIfSmi(object_, receiver_not_string_);
+
+ // Fetch the instance type of the receiver into result register.
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+ // If the receiver is not a string trigger the non-string case.
+ __ test(result_, Immediate(kIsNotStringMask));
+ __ j(not_zero, receiver_not_string_);
+ }
+
+ // If the index is non-smi trigger the non-smi case.
+ __ JumpIfNotSmi(index_, &index_not_smi_);
+ __ bind(&got_smi_index_);
+
+ // Check for index out of range.
+ __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
+ __ j(above_equal, index_out_of_range_);
+
+ __ SmiUntag(index_);
+
+ Factory* factory = masm->isolate()->factory();
+ StringCharLoadGenerator::Generate(
+ masm, factory, object_, index_, result_, &call_runtime_);
+
+ __ SmiTag(result_);
+ __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+ MacroAssembler* masm, EmbedMode embed_mode,
+ const RuntimeCallHelper& call_helper) {
+ __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
+
+ // Index is not a smi.
+ __ bind(&index_not_smi_);
+ // If index is a heap number, try converting it to an integer.
+ __ CheckMap(index_,
+ masm->isolate()->factory()->heap_number_map(),
+ index_not_number_,
+ DONT_DO_SMI_CHECK);
+ call_helper.BeforeCall(masm);
+ if (embed_mode == PART_OF_IC_HANDLER) {
+ __ push(LoadWithVectorDescriptor::VectorRegister());
+ __ push(LoadDescriptor::SlotRegister());
+ }
+ __ push(object_);
+ __ push(index_); // Consumed by runtime conversion function.
+ __ CallRuntime(Runtime::kNumberToSmi);
+ if (!index_.is(eax)) {
+ // Save the conversion result before the pop instructions below
+ // have a chance to overwrite it.
+ __ mov(index_, eax);
+ }
+ __ pop(object_);
+ if (embed_mode == PART_OF_IC_HANDLER) {
+ __ pop(LoadDescriptor::SlotRegister());
+ __ pop(LoadWithVectorDescriptor::VectorRegister());
+ }
+ // Reload the instance type.
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+ call_helper.AfterCall(masm);
+ // If index is still not a smi, it must be out of range.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ JumpIfNotSmi(index_, index_out_of_range_);
+ // Otherwise, return to the fast path.
+ __ jmp(&got_smi_index_);
+
+ // Call runtime. We get here when the receiver is a string and the
+ // index is a number, but the code of getting the actual character
+ // is too complex (e.g., when the string needs to be flattened).
+ __ bind(&call_runtime_);
+ call_helper.BeforeCall(masm);
+ __ push(object_);
+ __ SmiTag(index_);
+ __ push(index_);
+ __ CallRuntime(Runtime::kStringCharCodeAtRT);
+ if (!result_.is(eax)) {
+ __ mov(result_, eax);
+ }
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
+}
+
+void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2) {
+ Register length = scratch1;
+
+ // Compare lengths.
+ Label strings_not_equal, check_zero_length;
+ __ mov(length, FieldOperand(left, String::kLengthOffset));
+ __ cmp(length, FieldOperand(right, String::kLengthOffset));
+ __ j(equal, &check_zero_length, Label::kNear);
+ __ bind(&strings_not_equal);
+ __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
+ __ ret(0);
+
+ // Check if the length is zero.
+ Label compare_chars;
+ __ bind(&check_zero_length);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(length, length);
+ __ j(not_zero, &compare_chars, Label::kNear);
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+ // Compare characters.
+ __ bind(&compare_chars);
+ GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
+ &strings_not_equal, Label::kNear);
+
+ // Characters are equal.
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+}
+
+
+void StringHelper::GenerateCompareFlatOneByteStrings(
+ MacroAssembler* masm, Register left, Register right, Register scratch1,
+ Register scratch2, Register scratch3) {
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->string_compare_native(), 1);
+
+ // Find minimum length.
+ Label left_shorter;
+ __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
+ __ mov(scratch3, scratch1);
+ __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
+
+ Register length_delta = scratch3;
+
+ __ j(less_equal, &left_shorter, Label::kNear);
+ // Right string is shorter. Change scratch1 to be length of right string.
+ __ sub(scratch1, length_delta);
+ __ bind(&left_shorter);
+
+ Register min_length = scratch1;
+
+ // If either length is zero, just compare lengths.
+ Label compare_lengths;
+ __ test(min_length, min_length);
+ __ j(zero, &compare_lengths, Label::kNear);
+
+ // Compare characters.
+ Label result_not_equal;
+ GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
+ &result_not_equal, Label::kNear);
+
+ // Compare lengths - strings up to min-length are equal.
+ __ bind(&compare_lengths);
+ __ test(length_delta, length_delta);
+ Label length_not_equal;
+ __ j(not_zero, &length_not_equal, Label::kNear);
+
+ // Result is EQUAL.
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+ Label result_greater;
+ Label result_less;
+ __ bind(&length_not_equal);
+ __ j(greater, &result_greater, Label::kNear);
+ __ jmp(&result_less, Label::kNear);
+ __ bind(&result_not_equal);
+ __ j(above, &result_greater, Label::kNear);
+ __ bind(&result_less);
+
+ // Result is LESS.
+ __ Move(eax, Immediate(Smi::FromInt(LESS)));
+ __ ret(0);
+
+ // Result is GREATER.
+ __ bind(&result_greater);
+ __ Move(eax, Immediate(Smi::FromInt(GREATER)));
+ __ ret(0);
+}
+
+
+void StringHelper::GenerateOneByteCharsCompareLoop(
+ MacroAssembler* masm, Register left, Register right, Register length,
+ Register scratch, Label* chars_not_equal,
+ Label::Distance chars_not_equal_near) {
+ // Change index to run from -length to -1 by adding length to string
+ // start. This means that loop ends when index reaches zero, which
+ // doesn't need an additional compare.
+ __ SmiUntag(length);
+ __ lea(left,
+ FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
+ __ lea(right,
+ FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
+ __ neg(length);
+ Register index = length; // index = -length;
+
+ // Compare loop.
+ Label loop;
+ __ bind(&loop);
+ __ mov_b(scratch, Operand(left, index, times_1, 0));
+ __ cmpb(scratch, Operand(right, index, times_1, 0));
+ __ j(not_equal, chars_not_equal, chars_not_equal_near);
+ __ inc(index);
+ __ j(not_zero, &loop);
+}
+
+
+void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
+ DCHECK_EQ(CompareICState::BOOLEAN, state());
+ Label miss;
+ Label::Distance const miss_distance =
+ masm->emit_debug_code() ? Label::kFar : Label::kNear;
+
+ __ JumpIfSmi(edx, &miss, miss_distance);
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ JumpIfSmi(eax, &miss, miss_distance);
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
+ __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
+ if (!Token::IsEqualityOp(op())) {
+ __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
+ __ AssertSmi(eax);
+ __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
+ __ AssertSmi(edx);
+ __ xchg(eax, edx);
+ }
+ __ sub(eax, edx);
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateSmis(MacroAssembler* masm) {
+ DCHECK(state() == CompareICState::SMI);
+ Label miss;
+ __ mov(ecx, edx);
+ __ or_(ecx, eax);
+ __ JumpIfNotSmi(ecx, &miss, Label::kNear);
+
+ if (GetCondition() == equal) {
+ // For equality we do not care about the sign of the result.
+ __ sub(eax, edx);
+ } else {
+ Label done;
+ __ sub(edx, eax);
+ __ j(no_overflow, &done, Label::kNear);
+ // Correct sign of result in case of overflow.
+ __ not_(edx);
+ __ bind(&done);
+ __ mov(eax, edx);
+ }
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
+ DCHECK(state() == CompareICState::NUMBER);
+
+ Label generic_stub, check_left;
+ Label unordered, maybe_undefined1, maybe_undefined2;
+ Label miss;
+
+ if (left() == CompareICState::SMI) {
+ __ JumpIfNotSmi(edx, &miss);
+ }
+ if (right() == CompareICState::SMI) {
+ __ JumpIfNotSmi(eax, &miss);
+ }
+
+ // Inlining the double comparison and falling back to the general compare
+ // stub if NaN is involved or SSE2 or CMOV is unsupported.
+ __ JumpIfSmi(eax, &check_left, Label::kNear);
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ __ j(not_equal, &maybe_undefined1, Label::kNear);
+
+ __ bind(&check_left);
+ __ JumpIfSmi(edx, &generic_stub, Label::kNear);
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ __ j(not_equal, &maybe_undefined2, Label::kNear);
+
+ __ bind(&unordered);
+ __ bind(&generic_stub);
+ CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
+ CompareICState::GENERIC, CompareICState::GENERIC);
+ __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ bind(&maybe_undefined1);
+ if (Token::IsOrderedRelationalCompareOp(op())) {
+ __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
+ __ j(not_equal, &miss);
+ __ JumpIfSmi(edx, &unordered);
+ __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
+ __ j(not_equal, &maybe_undefined2, Label::kNear);
+ __ jmp(&unordered);
+ }
+
+ __ bind(&maybe_undefined2);
+ if (Token::IsOrderedRelationalCompareOp(op())) {
+ __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
+ __ j(equal, &unordered);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
+ DCHECK(state() == CompareICState::INTERNALIZED_STRING);
+ DCHECK(GetCondition() == equal);
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+ Register tmp1 = ecx;
+ Register tmp2 = ebx;
+
+ // Check that both operands are heap objects.
+ Label miss;
+ __ mov(tmp1, left);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ and_(tmp1, right);
+ __ JumpIfSmi(tmp1, &miss, Label::kNear);
+
+ // Check that both operands are internalized strings.
+ __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+ __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+ __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+ __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ or_(tmp1, tmp2);
+ __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+ __ j(not_zero, &miss, Label::kNear);
+
+ // Internalized strings are compared by identity.
+ Label done;
+ __ cmp(left, right);
+ // Make sure eax is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(eax));
+ __ j(not_equal, &done, Label::kNear);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ bind(&done);
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
+ DCHECK(state() == CompareICState::UNIQUE_NAME);
+ DCHECK(GetCondition() == equal);
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+ Register tmp1 = ecx;
+ Register tmp2 = ebx;
+
+ // Check that both operands are heap objects.
+ Label miss;
+ __ mov(tmp1, left);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ and_(tmp1, right);
+ __ JumpIfSmi(tmp1, &miss, Label::kNear);
+
+ // Check that both operands are unique names. This leaves the instance
+ // types loaded in tmp1 and tmp2.
+ __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+ __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+ __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+ __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+
+ __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
+ __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
+
+ // Unique names are compared by identity.
+ Label done;
+ __ cmp(left, right);
+ // Make sure eax is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(eax));
+ __ j(not_equal, &done, Label::kNear);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ bind(&done);
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateStrings(MacroAssembler* masm) {
+ DCHECK(state() == CompareICState::STRING);
+ Label miss;
+
+ bool equality = Token::IsEqualityOp(op());
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+ Register tmp1 = ecx;
+ Register tmp2 = ebx;
+ Register tmp3 = edi;
+
+ // Check that both operands are heap objects.
+ __ mov(tmp1, left);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ and_(tmp1, right);
+ __ JumpIfSmi(tmp1, &miss);
+
+ // Check that both operands are strings. This leaves the instance
+ // types loaded in tmp1 and tmp2.
+ __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
+ __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
+ __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
+ __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
+ __ mov(tmp3, tmp1);
+ STATIC_ASSERT(kNotStringTag != 0);
+ __ or_(tmp3, tmp2);
+ __ test(tmp3, Immediate(kIsNotStringMask));
+ __ j(not_zero, &miss);
+
+ // Fast check for identical strings.
+ Label not_same;
+ __ cmp(left, right);
+ __ j(not_equal, &not_same, Label::kNear);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+ // Handle not identical strings.
+ __ bind(&not_same);
+
+ // Check that both strings are internalized. If they are, we're done
+ // because we already know they are not identical. But in the case of
+ // non-equality compare, we still need to determine the order. We
+ // also know they are both strings.
+ if (equality) {
+ Label do_compare;
+ STATIC_ASSERT(kInternalizedTag == 0);
+ __ or_(tmp1, tmp2);
+ __ test(tmp1, Immediate(kIsNotInternalizedMask));
+ __ j(not_zero, &do_compare, Label::kNear);
+ // Make sure eax is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(eax));
+ __ ret(0);
+ __ bind(&do_compare);
+ }
+
+ // Check that both strings are sequential one-byte.
+ Label runtime;
+ __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
+
+ // Compare flat one byte strings. Returns when done.
+ if (equality) {
+ StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
+ tmp2);
+ } else {
+ StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
+ tmp2, tmp3);
+ }
+
+ // Handle more complex cases in runtime.
+ __ bind(&runtime);
+ if (equality) {
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(left);
+ __ Push(right);
+ __ CallRuntime(Runtime::kStringEqual);
+ }
+ __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
+ __ Ret();
+ } else {
+ __ pop(tmp1); // Return address.
+ __ push(left);
+ __ push(right);
+ __ push(tmp1);
+ __ TailCallRuntime(Runtime::kStringCompare);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
+ DCHECK_EQ(CompareICState::RECEIVER, state());
+ Label miss;
+ __ mov(ecx, edx);
+ __ and_(ecx, eax);
+ __ JumpIfSmi(ecx, &miss, Label::kNear);
+
+ STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
+ __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(below, &miss, Label::kNear);
+ __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
+ __ j(below, &miss, Label::kNear);
+
+ DCHECK_EQ(equal, GetCondition());
+ __ sub(eax, edx);
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
+ Label miss;
+ Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
+ __ mov(ecx, edx);
+ __ and_(ecx, eax);
+ __ JumpIfSmi(ecx, &miss, Label::kNear);
+
+ __ GetWeakValue(edi, cell);
+ __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
+ __ j(not_equal, &miss, Label::kNear);
+ __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
+ __ j(not_equal, &miss, Label::kNear);
+
+ if (Token::IsEqualityOp(op())) {
+ __ sub(eax, edx);
+ __ ret(0);
+ } else {
+ __ PopReturnAddressTo(ecx);
+ __ Push(edx);
+ __ Push(eax);
+ __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
+ __ PushReturnAddressFrom(ecx);
+ __ TailCallRuntime(Runtime::kCompare);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void CompareICStub::GenerateMiss(MacroAssembler* masm) {
+ {
+ // Call the runtime system in a fresh internal frame.
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edx); // Preserve edx and eax.
+ __ push(eax);
+ __ push(edx); // And also use them as the arguments.
+ __ push(eax);
+ __ push(Immediate(Smi::FromInt(op())));
+ __ CallRuntime(Runtime::kCompareIC_Miss);
+ // Compute the entry point of the rewritten stub.
+ __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
+ __ pop(eax);
+ __ pop(edx);
+ }
+
+ // Do a tail call to the rewritten stub.
+ __ jmp(edi);
+}
+
+
+// Helper function used to check that the dictionary doesn't contain
+// the property. This function may return false negatives, so miss_label
+// must always call a backup property check that is complete.
+// This function is safe to call if the receiver has fast properties.
+// Name must be a unique name and receiver must be a heap object.
+void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
+ Label* miss,
+ Label* done,
+ Register properties,
+ Handle<Name> name,
+ Register r0) {
+ DCHECK(name->IsUniqueName());
+
+ // If names of slots in range from 1 to kProbes - 1 for the hash value are
+ // not equal to the name and kProbes-th slot is not used (its name is the
+ // undefined value), it guarantees the hash table doesn't contain the
+ // property. It's true even if some slots represent deleted properties
+ // (their names are the hole value).
+ for (int i = 0; i < kInlinedProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ Register index = r0;
+ // Capacity is smi 2^n.
+ __ mov(index, FieldOperand(properties, kCapacityOffset));
+ __ dec(index);
+ __ and_(index,
+ Immediate(Smi::FromInt(name->Hash() +
+ NameDictionary::GetProbeOffset(i))));
+
+ // Scale the index by multiplying by the entry size.
+ STATIC_ASSERT(NameDictionary::kEntrySize == 3);
+ __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
+ Register entity_name = r0;
+ // Having undefined at this place means the name is not contained.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
+ kElementsStartOffset - kHeapObjectTag));
+ __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
+ __ j(equal, done);
+
+ // Stop if found the property.
+ __ cmp(entity_name, Handle<Name>(name));
+ __ j(equal, miss);
+
+ Label good;
+ // Check for the hole and skip.
+ __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
+ __ j(equal, &good, Label::kNear);
+
+ // Check if the entry name is not a unique name.
+ __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
+ __ JumpIfNotUniqueNameInstanceType(
+ FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
+ __ bind(&good);
+ }
+
+ NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
+ NEGATIVE_LOOKUP);
+ __ push(Immediate(name));
+ __ push(Immediate(name->Hash()));
+ __ CallStub(&stub);
+ __ test(r0, r0);
+ __ j(not_zero, miss);
+ __ jmp(done);
+}
+
+void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
+ // This stub overrides SometimesSetsUpAFrame() to return false. That means
+ // we cannot call anything that could cause a GC from this stub.
+ // Stack frame on entry:
+ // esp[0 * kPointerSize]: return address.
+ // esp[1 * kPointerSize]: key's hash.
+ // esp[2 * kPointerSize]: key.
+ // Registers:
+ // dictionary_: NameDictionary to probe.
+ // result_: used as scratch.
+ // index_: will hold an index of entry if lookup is successful.
+ // might alias with result_.
+ // Returns:
+ // result_ is zero if lookup failed, non zero otherwise.
+
+ Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
+
+ Register scratch = result();
+
+ __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
+ __ dec(scratch);
+ __ SmiUntag(scratch);
+ __ push(scratch);
+
+ // If names of slots in range from 1 to kProbes - 1 for the hash value are
+ // not equal to the name and kProbes-th slot is not used (its name is the
+ // undefined value), it guarantees the hash table doesn't contain the
+ // property. It's true even if some slots represent deleted properties
+ // (their names are the null value).
+ for (int i = kInlinedProbes; i < kTotalProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ __ mov(scratch, Operand(esp, 2 * kPointerSize));
+ if (i > 0) {
+ __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
+ }
+ __ and_(scratch, Operand(esp, 0));
+
+ // Scale the index by multiplying by the entry size.
+ STATIC_ASSERT(NameDictionary::kEntrySize == 3);
+ __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
+
+ // Having undefined at this place means the name is not contained.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
+ kElementsStartOffset - kHeapObjectTag));
+ __ cmp(scratch, isolate()->factory()->undefined_value());
+ __ j(equal, &not_in_dictionary);
+
+ // Stop if found the property.
+ __ cmp(scratch, Operand(esp, 3 * kPointerSize));
+ __ j(equal, &in_dictionary);
+
+ if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
+ // If we hit a key that is not a unique name during negative
+ // lookup we have to bailout as this key might be equal to the
+ // key we are looking for.
+
+ // Check if the entry name is not a unique name.
+ __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
+ __ JumpIfNotUniqueNameInstanceType(
+ FieldOperand(scratch, Map::kInstanceTypeOffset),
+ &maybe_in_dictionary);
+ }
+ }
+
+ __ bind(&maybe_in_dictionary);
+ // If we are doing negative lookup then probing failure should be
+ // treated as a lookup success. For positive lookup probing failure
+ // should be treated as lookup failure.
+ if (mode() == POSITIVE_LOOKUP) {
+ __ mov(result(), Immediate(0));
+ __ Drop(1);
+ __ ret(2 * kPointerSize);
+ }
+
+ __ bind(&in_dictionary);
+ __ mov(result(), Immediate(1));
+ __ Drop(1);
+ __ ret(2 * kPointerSize);
+
+ __ bind(&not_in_dictionary);
+ __ mov(result(), Immediate(0));
+ __ Drop(1);
+ __ ret(2 * kPointerSize);
+}
+
+
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
+ Isolate* isolate) {
+ StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
+ stub.GetCode();
+ StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
+ stub2.GetCode();
+}
+
+
+// Takes the input in 3 registers: address_ value_ and object_. A pointer to
+// the value has just been written into the object, now this stub makes sure
+// we keep the GC informed. The word in the object where the value has been
+// written is in the address register.
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+ Label skip_to_incremental_noncompacting;
+ Label skip_to_incremental_compacting;
+
+ // The first two instructions are generated with labels so as to get the
+ // offset fixed up correctly by the bind(Label*) call. We patch it back and
+ // forth between a compare instructions (a nop in this position) and the
+ // real branch when we start and stop incremental heap marking.
+ __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
+ __ jmp(&skip_to_incremental_compacting, Label::kFar);
+
+ if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+ __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+ MacroAssembler::kReturnAtEnd);
+ } else {
+ __ ret(0);
+ }
+
+ __ bind(&skip_to_incremental_noncompacting);
+ GenerateIncremental(masm, INCREMENTAL);
+
+ __ bind(&skip_to_incremental_compacting);
+ GenerateIncremental(masm, INCREMENTAL_COMPACTION);
+
+ // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
+ // Will be checked in IncrementalMarking::ActivateGeneratedStub.
+ masm->set_byte_at(0, kTwoByteNopInstruction);
+ masm->set_byte_at(2, kFiveByteNopInstruction);
+}
+
+
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
+ regs_.Save(masm);
+
+ if (remembered_set_action() == EMIT_REMEMBERED_SET) {
+ Label dont_need_remembered_set;
+
+ __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
+ __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
+ regs_.scratch0(),
+ &dont_need_remembered_set);
+
+ __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
+ &dont_need_remembered_set);
+
+ // First notify the incremental marker if necessary, then update the
+ // remembered set.
+ CheckNeedsToInformIncrementalMarker(
+ masm,
+ kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
+ mode);
+ InformIncrementalMarker(masm);
+ regs_.Restore(masm);
+ __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+ MacroAssembler::kReturnAtEnd);
+
+ __ bind(&dont_need_remembered_set);
+ }
+
+ CheckNeedsToInformIncrementalMarker(
+ masm,
+ kReturnOnNoNeedToInformIncrementalMarker,
+ mode);
+ InformIncrementalMarker(masm);
+ regs_.Restore(masm);
+ __ ret(0);
+}
+
+
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
+ regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
+ int argument_count = 3;
+ __ PrepareCallCFunction(argument_count, regs_.scratch0());
+ __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
+ __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ CallCFunction(
+ ExternalReference::incremental_marking_record_write_function(isolate()),
+ argument_count);
+
+ regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
+}
+
+
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
+ MacroAssembler* masm,
+ OnNoNeedToInformIncrementalMarker on_no_need,
+ Mode mode) {
+ Label need_incremental, need_incremental_pop_object;
+
+#ifndef V8_CONCURRENT_MARKING
+ Label object_is_black;
+ // Let's look at the color of the object: If it is not black we don't have
+ // to inform the incremental marker.
+ __ JumpIfBlack(regs_.object(),
+ regs_.scratch0(),
+ regs_.scratch1(),
+ &object_is_black,
+ Label::kNear);
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+ MacroAssembler::kReturnAtEnd);
+ } else {
+ __ ret(0);
+ }
+
+ __ bind(&object_is_black);
+#endif
+
+ // Get the value from the slot.
+ __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
+
+ if (mode == INCREMENTAL_COMPACTION) {
+ Label ensure_not_white;
+
+ __ CheckPageFlag(regs_.scratch0(), // Contains value.
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kEvacuationCandidateMask,
+ zero,
+ &ensure_not_white,
+ Label::kNear);
+
+ __ CheckPageFlag(regs_.object(),
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kSkipEvacuationSlotsRecordingMask,
+ not_zero,
+ &ensure_not_white,
+ Label::kNear);
+
+ __ jmp(&need_incremental);
+
+ __ bind(&ensure_not_white);
+ }
+
+ // We need an extra register for this, so we push the object register
+ // temporarily.
+ __ push(regs_.object());
+ __ JumpIfWhite(regs_.scratch0(), // The value.
+ regs_.scratch1(), // Scratch.
+ regs_.object(), // Scratch.
+ &need_incremental_pop_object, Label::kNear);
+ __ pop(regs_.object());
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
+ MacroAssembler::kReturnAtEnd);
+ } else {
+ __ ret(0);
+ }
+
+ __ bind(&need_incremental_pop_object);
+ __ pop(regs_.object());
+
+ __ bind(&need_incremental);
+
+ // Fall through when we need to inform the incremental marker.
+}
+
+
+void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
+ Zone* zone) {
+ if (tasm->isolate()->function_entry_hook() != NULL) {
+ tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
+ }
+}
+
+void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
+ if (masm->isolate()->function_entry_hook() != NULL) {
+ ProfileEntryHookStub stub(masm->isolate());
+ masm->CallStub(&stub);
+ }
+}
+
+void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
+ // Save volatile registers.
+ const int kNumSavedRegisters = 3;
+ __ push(eax);
+ __ push(ecx);
+ __ push(edx);
+
+ // Calculate and push the original stack pointer.
+ __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
+ __ push(eax);
+
+ // Retrieve our return address and use it to calculate the calling
+ // function's address.
+ __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
+ __ sub(eax, Immediate(Assembler::kCallInstructionLength));
+ __ push(eax);
+
+ // Call the entry hook.
+ DCHECK(isolate()->function_entry_hook() != NULL);
+ __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
+ RelocInfo::RUNTIME_ENTRY);
+ __ add(esp, Immediate(2 * kPointerSize));
+
+ // Restore ecx.
+ __ pop(edx);
+ __ pop(ecx);
+ __ pop(eax);
+
+ __ ret(0);
+}
+
+template <class T>
+static void CreateArrayDispatch(MacroAssembler* masm,
+ AllocationSiteOverrideMode mode) {
+ if (mode == DISABLE_ALLOCATION_SITES) {
+ T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
+ __ TailCallStub(&stub);
+ } else if (mode == DONT_OVERRIDE) {
+ int last_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= last_index; ++i) {
+ Label next;
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ __ cmp(edx, kind);
+ __ j(not_equal, &next);
+ T stub(masm->isolate(), kind);
+ __ TailCallStub(&stub);
+ __ bind(&next);
+ }
+
+ // If we reached this point there is a problem.
+ __ Abort(kUnexpectedElementsKindInArrayConstructor);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
+ AllocationSiteOverrideMode mode) {
+ // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
+ // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
+ // eax - number of arguments
+ // edi - constructor?
+ // esp[0] - return address
+ // esp[4] - last argument
+ STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(PACKED_ELEMENTS == 2);
+ STATIC_ASSERT(HOLEY_ELEMENTS == 3);
+ STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
+ STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
+
+ if (mode == DISABLE_ALLOCATION_SITES) {
+ ElementsKind initial = GetInitialFastElementsKind();
+ ElementsKind holey_initial = GetHoleyElementsKind(initial);
+
+ ArraySingleArgumentConstructorStub stub_holey(
+ masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
+ __ TailCallStub(&stub_holey);
+ } else if (mode == DONT_OVERRIDE) {
+ // is the low bit set? If so, we are holey and that is good.
+ Label normal_sequence;
+ __ test_b(edx, Immediate(1));
+ __ j(not_zero, &normal_sequence);
+
+ // We are going to create a holey array, but our kind is non-holey.
+ // Fix kind and retry.
+ __ inc(edx);
+
+ if (FLAG_debug_code) {
+ Handle<Map> allocation_site_map =
+ masm->isolate()->factory()->allocation_site_map();
+ __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
+ __ Assert(equal, kExpectedAllocationSite);
+ }
+
+ // Save the resulting elements kind in type info. We can't just store r3
+ // in the AllocationSite::transition_info field because elements kind is
+ // restricted to a portion of the field...upper bits need to be left alone.
+ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+ __ add(
+ FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset),
+ Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
+
+ __ bind(&normal_sequence);
+ int last_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= last_index; ++i) {
+ Label next;
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ __ cmp(edx, kind);
+ __ j(not_equal, &next);
+ ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
+ __ TailCallStub(&stub);
+ __ bind(&next);
+ }
+
+ // If we reached this point there is a problem.
+ __ Abort(kUnexpectedElementsKindInArrayConstructor);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+template <class T>
+static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
+ int to_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= to_index; ++i) {
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ T stub(isolate, kind);
+ stub.GetCode();
+ if (AllocationSite::ShouldTrack(kind)) {
+ T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
+ stub1.GetCode();
+ }
+ }
+}
+
+void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
+ ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
+ isolate);
+ ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
+ isolate);
+ ArrayNArgumentsConstructorStub stub(isolate);
+ stub.GetCode();
+
+ ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
+ for (int i = 0; i < 2; i++) {
+ // For internal arrays we only need a few things
+ InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
+ stubh1.GetCode();
+ InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
+ stubh2.GetCode();
+ }
+}
+
+void ArrayConstructorStub::GenerateDispatchToArrayStub(
+ MacroAssembler* masm, AllocationSiteOverrideMode mode) {
+ Label not_zero_case, not_one_case;
+ __ test(eax, eax);
+ __ j(not_zero, &not_zero_case);
+ CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+
+ __ bind(&not_zero_case);
+ __ cmp(eax, 1);
+ __ j(greater, &not_one_case);
+ CreateArrayDispatchOneArgument(masm, mode);
+
+ __ bind(&not_one_case);
+ ArrayNArgumentsConstructorStub stub(masm->isolate());
+ __ TailCallStub(&stub);
+}
+
+void ArrayConstructorStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
+ // -- ebx : AllocationSite or undefined
+ // -- edi : constructor
+ // -- edx : Original constructor
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -----------------------------------
+ if (FLAG_debug_code) {
+ // The array construct code is only set for the global and natives
+ // builtin Array functions which always have maps.
+
+ // Initial map for the builtin Array function should be a map.
+ __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
+ __ CmpObjectType(ecx, MAP_TYPE, ecx);
+ __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
+
+ // We should either have undefined in ebx or a valid AllocationSite
+ __ AssertUndefinedOrAllocationSite(ebx);
+ }
+
+ Label subclassing;
+
+ // Enter the context of the Array function.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ __ cmp(edx, edi);
+ __ j(not_equal, &subclassing);
+
+ Label no_info;
+ // If the feedback vector is the undefined value call an array constructor
+ // that doesn't use AllocationSites.
+ __ cmp(ebx, isolate()->factory()->undefined_value());
+ __ j(equal, &no_info);
+
+ // Only look at the lower 16 bits of the transition info.
+ __ mov(edx,
+ FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset));
+ __ SmiUntag(edx);
+ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+ __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
+ GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
+
+ __ bind(&no_info);
+ GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
+
+ // Subclassing.
+ __ bind(&subclassing);
+ __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
+ __ add(eax, Immediate(3));
+ __ PopReturnAddressTo(ecx);
+ __ Push(edx);
+ __ Push(ebx);
+ __ PushReturnAddressFrom(ecx);
+ __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
+}
+
+void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
+ ElementsKind kind) {
+ Label not_zero_case, not_one_case;
+ Label normal_sequence;
+
+ __ test(eax, eax);
+ __ j(not_zero, &not_zero_case);
+ InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
+ __ TailCallStub(&stub0);
+
+ __ bind(&not_zero_case);
+ __ cmp(eax, 1);
+ __ j(greater, &not_one_case);
+
+ if (IsFastPackedElementsKind(kind)) {
+ // We might need to create a holey array
+ // look at the first argument
+ __ mov(ecx, Operand(esp, kPointerSize));
+ __ test(ecx, ecx);
+ __ j(zero, &normal_sequence);
+
+ InternalArraySingleArgumentConstructorStub stub1_holey(
+ isolate(), GetHoleyElementsKind(kind));
+ __ TailCallStub(&stub1_holey);
+ }
+
+ __ bind(&normal_sequence);
+ InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
+ __ TailCallStub(&stub1);
+
+ __ bind(&not_one_case);
+ ArrayNArgumentsConstructorStub stubN(isolate());
+ __ TailCallStub(&stubN);
+}
+
+void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- eax : argc
+ // -- edi : constructor
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -----------------------------------
+
+ if (FLAG_debug_code) {
+ // The array construct code is only set for the global and natives
+ // builtin Array functions which always have maps.
+
+ // Initial map for the builtin Array function should be a map.
+ __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
+ __ CmpObjectType(ecx, MAP_TYPE, ecx);
+ __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
+ }
+
+ // Figure out the right elements kind
+ __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Load the map's "bit field 2" into |result|. We only need the first byte,
+ // but the following masking takes care of that anyway.
+ __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
+ // Retrieve elements_kind from bit field 2.
+ __ DecodeField<Map::ElementsKindBits>(ecx);
+
+ if (FLAG_debug_code) {
+ Label done;
+ __ cmp(ecx, Immediate(PACKED_ELEMENTS));
+ __ j(equal, &done);
+ __ cmp(ecx, Immediate(HOLEY_ELEMENTS));
+ __ Assert(equal, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
+ __ bind(&done);
+ }
+
+ Label fast_elements_case;
+ __ cmp(ecx, Immediate(PACKED_ELEMENTS));
+ __ j(equal, &fast_elements_case);
+ GenerateCase(masm, HOLEY_ELEMENTS);
+
+ __ bind(&fast_elements_case);
+ GenerateCase(masm, PACKED_ELEMENTS);
+}
+
+void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edi : function
+ // -- esi : context
+ // -- ebp : frame pointer
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // Make edx point to the JavaScript frame.
+ __ mov(edx, ebp);
+ if (skip_stub_frame()) {
+ // For Ignition we need to skip the handler/stub frame to reach the
+ // JavaScript frame for the function.
+ __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
+ }
+ if (FLAG_debug_code) {
+ Label ok;
+ __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
+ __ j(equal, &ok);
+ __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
+ __ bind(&ok);
+ }
+
+ // Check if we have rest parameters (only possible if we have an
+ // arguments adaptor frame below the function frame).
+ Label no_rest_parameters;
+ __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
+ __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(not_equal, &no_rest_parameters, Label::kNear);
+
+ // Check if the arguments adaptor frame contains more arguments than
+ // specified by the function's internal formal parameter count.
+ Label rest_parameters;
+ __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ sub(eax,
+ FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ j(greater, &rest_parameters);
+
+ // Return an empty rest parameter array.
+ __ bind(&no_rest_parameters);
+ {
+ // ----------- S t a t e -------------
+ // -- esi : context
+ // -- esp[0] : return address
+ // -----------------------------------
+
+ // Allocate an empty rest parameter array.
+ Label allocate, done_allocate;
+ __ Allocate(JSArray::kSize, eax, edx, ecx, &allocate, NO_ALLOCATION_FLAGS);
+ __ bind(&done_allocate);
+
+ // Setup the rest parameter array in rax.
+ __ LoadGlobalFunction(Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX, ecx);
+ __ mov(FieldOperand(eax, JSArray::kMapOffset), ecx);
+ __ mov(ecx, isolate()->factory()->empty_fixed_array());
+ __ mov(FieldOperand(eax, JSArray::kPropertiesOrHashOffset), ecx);
+ __ mov(FieldOperand(eax, JSArray::kElementsOffset), ecx);
+ __ mov(FieldOperand(eax, JSArray::kLengthOffset), Immediate(Smi::kZero));
+ STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
+ __ Ret();
+
+ // Fall back to %AllocateInNewSpace.
+ __ bind(&allocate);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(Smi::FromInt(JSArray::kSize));
+ __ CallRuntime(Runtime::kAllocateInNewSpace);
+ }
+ __ jmp(&done_allocate);
+ }
+
+ __ bind(&rest_parameters);
+ {
+ // Compute the pointer to the first rest parameter (skippping the receiver).
+ __ lea(ebx,
+ Operand(ebx, eax, times_half_pointer_size,
+ StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
+
+ // ----------- S t a t e -------------
+ // -- esi : context
+ // -- eax : number of rest parameters (tagged)
+ // -- ebx : pointer to first rest parameters
+ // -- esp[0] : return address
+ // -----------------------------------
+
+ // Allocate space for the rest parameter array plus the backing store.
+ Label allocate, done_allocate;
+ __ lea(ecx, Operand(eax, times_half_pointer_size,
+ JSArray::kSize + FixedArray::kHeaderSize));
+ __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
+ __ bind(&done_allocate);
+
+ // Setup the elements array in edx.
+ __ mov(FieldOperand(edx, FixedArray::kMapOffset),
+ isolate()->factory()->fixed_array_map());
+ __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
+ {
+ Label loop, done_loop;
+ __ Move(ecx, Smi::kZero);
+ __ bind(&loop);
+ __ cmp(ecx, eax);
+ __ j(equal, &done_loop, Label::kNear);
+ __ mov(edi, Operand(ebx, 0 * kPointerSize));
+ __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
+ FixedArray::kHeaderSize),
+ edi);
+ __ sub(ebx, Immediate(1 * kPointerSize));
+ __ add(ecx, Immediate(Smi::FromInt(1)));
+ __ jmp(&loop);
+ __ bind(&done_loop);
+ }
+
+ // Setup the rest parameter array in edi.
+ __ lea(edi,
+ Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
+ __ LoadGlobalFunction(Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX, ecx);
+ __ mov(FieldOperand(edi, JSArray::kMapOffset), ecx);
+ __ mov(FieldOperand(edi, JSArray::kPropertiesOrHashOffset),
+ isolate()->factory()->empty_fixed_array());
+ __ mov(FieldOperand(edi, JSArray::kElementsOffset), edx);
+ __ mov(FieldOperand(edi, JSArray::kLengthOffset), eax);
+ STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
+ __ mov(eax, edi);
+ __ Ret();
+
+ // Fall back to %AllocateInNewSpace (if not too big).
+ Label too_big_for_new_space;
+ __ bind(&allocate);
+ __ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
+ __ j(greater, &too_big_for_new_space);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ SmiTag(ecx);
+ __ Push(eax);
+ __ Push(ebx);
+ __ Push(ecx);
+ __ CallRuntime(Runtime::kAllocateInNewSpace);
+ __ mov(edx, eax);
+ __ Pop(ebx);
+ __ Pop(eax);
+ }
+ __ jmp(&done_allocate);
+
+ // Fall back to %NewRestParameter.
+ __ bind(&too_big_for_new_space);
+ __ PopReturnAddressTo(ecx);
+ // We reload the function from the caller frame due to register pressure
+ // within this stub. This is the slow path, hence reloading is preferable.
+ if (skip_stub_frame()) {
+ // For Ignition we need to skip the handler/stub frame to reach the
+ // JavaScript frame for the function.
+ __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
+ } else {
+ __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
+ }
+ __ PushReturnAddressFrom(ecx);
+ __ TailCallRuntime(Runtime::kNewRestParameter);
+ }
+}
+
+void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edi : function
+ // -- esi : context
+ // -- ebp : frame pointer
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // Make ecx point to the JavaScript frame.
+ __ mov(ecx, ebp);
+ if (skip_stub_frame()) {
+ // For Ignition we need to skip the handler/stub frame to reach the
+ // JavaScript frame for the function.
+ __ mov(ecx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
+ }
+ if (FLAG_debug_code) {
+ Label ok;
+ __ cmp(edi, Operand(ecx, StandardFrameConstants::kFunctionOffset));
+ __ j(equal, &ok);
+ __ Abort(kInvalidFrameForFastNewSloppyArgumentsStub);
+ __ bind(&ok);
+ }
+
+ // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
+ __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(ebx,
+ FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ lea(edx, Operand(ecx, ebx, times_half_pointer_size,
+ StandardFrameConstants::kCallerSPOffset));
+
+ // ebx : number of parameters (tagged)
+ // edx : parameters pointer
+ // edi : function
+ // ecx : JavaScript frame pointer.
+ // esp[0] : return address
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ mov(eax, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
+ __ mov(eax, Operand(eax, CommonFrameConstants::kContextOrFrameTypeOffset));
+ __ cmp(eax, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &adaptor_frame, Label::kNear);
+
+ // No adaptor, parameter count = argument count.
+ __ mov(ecx, ebx);
+ __ push(ebx);
+ __ jmp(&try_allocate, Label::kNear);
+
+ // We have an adaptor frame. Patch the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ push(ebx);
+ __ mov(edx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
+ __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ lea(edx,
+ Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset));
+
+ // ebx = parameter count (tagged)
+ // ecx = argument count (smi-tagged)
+ // Compute the mapped parameter count = min(ebx, ecx) in ebx.
+ __ cmp(ebx, ecx);
+ __ j(less_equal, &try_allocate, Label::kNear);
+ __ mov(ebx, ecx);
+
+ // Save mapped parameter count and function.
+ __ bind(&try_allocate);
+ __ push(edi);
+ __ push(ebx);
+
+ // Compute the sizes of backing store, parameter map, and arguments object.
+ // 1. Parameter map, has 2 extra words containing context and backing store.
+ const int kParameterMapHeaderSize =
+ FixedArray::kHeaderSize + 2 * kPointerSize;
+ Label no_parameter_map;
+ __ test(ebx, ebx);
+ __ j(zero, &no_parameter_map, Label::kNear);
+ __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
+ __ bind(&no_parameter_map);
+
+ // 2. Backing store.
+ __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
+
+ // 3. Arguments object.
+ __ add(ebx, Immediate(JSSloppyArgumentsObject::kSize));
+
+ // Do the allocation of all three objects in one go.
+ __ Allocate(ebx, eax, edi, no_reg, &runtime, NO_ALLOCATION_FLAGS);
+
+ // eax = address of new object(s) (tagged)
+ // ecx = argument count (smi-tagged)
+ // esp[0] = mapped parameter count (tagged)
+ // esp[4] = function
+ // esp[8] = parameter count (tagged)
+ // Get the arguments map from the current native context into edi.
+ Label has_mapped_parameters, instantiate;
+ __ mov(edi, NativeContextOperand());
+ __ mov(ebx, Operand(esp, 0 * kPointerSize));
+ __ test(ebx, ebx);
+ __ j(not_zero, &has_mapped_parameters, Label::kNear);
+ __ mov(
+ edi,
+ Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
+ __ jmp(&instantiate, Label::kNear);
+
+ __ bind(&has_mapped_parameters);
+ __ mov(edi, Operand(edi, Context::SlotOffset(
+ Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
+ __ bind(&instantiate);
+
+ // eax = address of new object (tagged)
+ // ebx = mapped parameter count (tagged)
+ // ecx = argument count (smi-tagged)
+ // edi = address of arguments map (tagged)
+ // esp[0] = mapped parameter count (tagged)
+ // esp[4] = function
+ // esp[8] = parameter count (tagged)
+ // Copy the JS object part.
+ __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
+ __ mov(FieldOperand(eax, JSObject::kPropertiesOrHashOffset),
+ masm->isolate()->factory()->empty_fixed_array());
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset),
+ masm->isolate()->factory()->empty_fixed_array());
+
+ // Set up the callee in-object property.
+ STATIC_ASSERT(JSSloppyArgumentsObject::kCalleeIndex == 1);
+ __ mov(edi, Operand(esp, 1 * kPointerSize));
+ __ AssertNotSmi(edi);
+ __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kCalleeOffset), edi);
+
+ // Use the length (smi tagged) and set that as an in-object property too.
+ __ AssertSmi(ecx);
+ __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kLengthOffset), ecx);
+
+ // Set up the elements pointer in the allocated arguments object.
+ // If we allocated a parameter map, edi will point there, otherwise to the
+ // backing store.
+ __ lea(edi, Operand(eax, JSSloppyArgumentsObject::kSize));
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
+
+ // eax = address of new object (tagged)
+ // ebx = mapped parameter count (tagged)
+ // ecx = argument count (tagged)
+ // edx = address of receiver argument
+ // edi = address of parameter map or backing store (tagged)
+ // esp[0] = mapped parameter count (tagged)
+ // esp[4] = function
+ // esp[8] = parameter count (tagged)
+ // Free two registers.
+ __ push(edx);
+ __ push(eax);
+
+ // Initialize parameter map. If there are no mapped arguments, we're done.
+ Label skip_parameter_map;
+ __ test(ebx, ebx);
+ __ j(zero, &skip_parameter_map);
+
+ __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+ Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
+ __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
+ __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
+ __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
+ __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
+ __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
+
+ // Copy the parameter slots and the holes in the arguments.
+ // We need to fill in mapped_parameter_count slots. They index the context,
+ // where parameters are stored in reverse order, at
+ // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
+ // The mapped parameter thus need to get indices
+ // MIN_CONTEXT_SLOTS+parameter_count-1 ..
+ // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
+ // We loop from right to left.
+ Label parameters_loop, parameters_test;
+ __ push(ecx);
+ __ mov(eax, Operand(esp, 3 * kPointerSize));
+ __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
+ __ add(ebx, Operand(esp, 5 * kPointerSize));
+ __ sub(ebx, eax);
+ __ mov(ecx, isolate()->factory()->the_hole_value());
+ __ mov(edx, edi);
+ __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
+ // eax = loop variable (tagged)
+ // ebx = mapping index (tagged)
+ // ecx = the hole value
+ // edx = address of parameter map (tagged)
+ // edi = address of backing store (tagged)
+ // esp[0] = argument count (tagged)
+ // esp[4] = address of new object (tagged)
+ // esp[8] = address of receiver argument
+ // esp[12] = mapped parameter count (tagged)
+ // esp[16] = function
+ // esp[20] = parameter count (tagged)
+ __ jmp(&parameters_test, Label::kNear);
+
+ __ bind(&parameters_loop);
+ __ sub(eax, Immediate(Smi::FromInt(1)));
+ __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
+ __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
+ __ add(ebx, Immediate(Smi::FromInt(1)));
+ __ bind(&parameters_test);
+ __ test(eax, eax);
+ __ j(not_zero, &parameters_loop, Label::kNear);
+ __ pop(ecx);
+
+ __ bind(&skip_parameter_map);
+
+ // ecx = argument count (tagged)
+ // edi = address of backing store (tagged)
+ // esp[0] = address of new object (tagged)
+ // esp[4] = address of receiver argument
+ // esp[8] = mapped parameter count (tagged)
+ // esp[12] = function
+ // esp[16] = parameter count (tagged)
+ // Copy arguments header and remaining slots (if there are any).
+ __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+ Immediate(isolate()->factory()->fixed_array_map()));
+ __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
+
+ Label arguments_loop, arguments_test;
+ __ mov(ebx, Operand(esp, 2 * kPointerSize));
+ __ mov(edx, Operand(esp, 1 * kPointerSize));
+ __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
+ __ sub(edx, ebx);
+ __ jmp(&arguments_test, Label::kNear);
+
+ __ bind(&arguments_loop);
+ __ sub(edx, Immediate(kPointerSize));
+ __ mov(eax, Operand(edx, 0));
+ __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
+ __ add(ebx, Immediate(Smi::FromInt(1)));
+
+ __ bind(&arguments_test);
+ __ cmp(ebx, ecx);
+ __ j(less, &arguments_loop, Label::kNear);
+
+ // Restore.
+ __ pop(eax); // Address of arguments object.
+ __ Drop(4);
+
+ // Return.
+ __ ret(0);
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ pop(eax); // Remove saved mapped parameter count.
+ __ pop(edi); // Pop saved function.
+ __ pop(eax); // Remove saved parameter count.
+ __ pop(eax); // Pop return address.
+ __ push(edi); // Push function.
+ __ push(edx); // Push parameters pointer.
+ __ push(ecx); // Push parameter count.
+ __ push(eax); // Push return address.
+ __ TailCallRuntime(Runtime::kNewSloppyArguments);
+}
+
+void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edi : function
+ // -- esi : context
+ // -- ebp : frame pointer
+ // -- esp[0] : return address
+ // -----------------------------------
+ __ AssertFunction(edi);
+
+ // Make edx point to the JavaScript frame.
+ __ mov(edx, ebp);
+ if (skip_stub_frame()) {
+ // For Ignition we need to skip the handler/stub frame to reach the
+ // JavaScript frame for the function.
+ __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
+ }
+ if (FLAG_debug_code) {
+ Label ok;
+ __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
+ __ j(equal, &ok);
+ __ Abort(kInvalidFrameForFastNewStrictArgumentsStub);
+ __ bind(&ok);
+ }
+
+ // Check if we have an arguments adaptor frame below the function frame.
+ Label arguments_adaptor, arguments_done;
+ __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
+ __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &arguments_adaptor, Label::kNear);
+ {
+ __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(eax,
+ FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ lea(ebx,
+ Operand(edx, eax, times_half_pointer_size,
+ StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
+ }
+ __ jmp(&arguments_done, Label::kNear);
+ __ bind(&arguments_adaptor);
+ {
+ __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ lea(ebx,
+ Operand(ebx, eax, times_half_pointer_size,
+ StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
+ }
+ __ bind(&arguments_done);
+
+ // ----------- S t a t e -------------
+ // -- eax : number of arguments (tagged)
+ // -- ebx : pointer to the first argument
+ // -- esi : context
+ // -- esp[0] : return address
+ // -----------------------------------
+
+ // Allocate space for the strict arguments object plus the backing store.
+ Label allocate, done_allocate;
+ __ lea(ecx,
+ Operand(eax, times_half_pointer_size,
+ JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
+ __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
+ __ bind(&done_allocate);
+
+ // Setup the elements array in edx.
+ __ mov(FieldOperand(edx, FixedArray::kMapOffset),
+ isolate()->factory()->fixed_array_map());
+ __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
+ {
+ Label loop, done_loop;
+ __ Move(ecx, Smi::kZero);
+ __ bind(&loop);
+ __ cmp(ecx, eax);
+ __ j(equal, &done_loop, Label::kNear);
+ __ mov(edi, Operand(ebx, 0 * kPointerSize));
+ __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
+ FixedArray::kHeaderSize),
+ edi);
+ __ sub(ebx, Immediate(1 * kPointerSize));
+ __ add(ecx, Immediate(Smi::FromInt(1)));
+ __ jmp(&loop);
+ __ bind(&done_loop);
+ }
+
+ // Setup the rest parameter array in edi.
+ __ lea(edi,
+ Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
+ __ LoadGlobalFunction(Context::STRICT_ARGUMENTS_MAP_INDEX, ecx);
+ __ mov(FieldOperand(edi, JSStrictArgumentsObject::kMapOffset), ecx);
+ __ mov(FieldOperand(edi, JSStrictArgumentsObject::kPropertiesOrHashOffset),
+ isolate()->factory()->empty_fixed_array());
+ __ mov(FieldOperand(edi, JSStrictArgumentsObject::kElementsOffset), edx);
+ __ mov(FieldOperand(edi, JSStrictArgumentsObject::kLengthOffset), eax);
+ STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
+ __ mov(eax, edi);
+ __ Ret();
+
+ // Fall back to %AllocateInNewSpace (if not too big).
+ Label too_big_for_new_space;
+ __ bind(&allocate);
+ __ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
+ __ j(greater, &too_big_for_new_space);
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ SmiTag(ecx);
+ __ Push(eax);
+ __ Push(ebx);
+ __ Push(ecx);
+ __ CallRuntime(Runtime::kAllocateInNewSpace);
+ __ mov(edx, eax);
+ __ Pop(ebx);
+ __ Pop(eax);
+ }
+ __ jmp(&done_allocate);
+
+ // Fall back to %NewStrictArguments.
+ __ bind(&too_big_for_new_space);
+ __ PopReturnAddressTo(ecx);
+ // We reload the function from the caller frame due to register pressure
+ // within this stub. This is the slow path, hence reloading is preferable.
+ if (skip_stub_frame()) {
+ // For Ignition we need to skip the handler/stub frame to reach the
+ // JavaScript frame for the function.
+ __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
+ } else {
+ __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
+ }
+ __ PushReturnAddressFrom(ecx);
+ __ TailCallRuntime(Runtime::kNewStrictArguments);
+}
+
+// Generates an Operand for saving parameters after PrepareCallApiFunction.
+static Operand ApiParameterOperand(int index) {
+ return Operand(esp, index * kPointerSize);
+}
+
+
+// Prepares stack to put arguments (aligns and so on). Reserves
+// space for return value if needed (assumes the return value is a handle).
+// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
+// etc. Saves context (esi). If space was reserved for return value then
+// stores the pointer to the reserved slot into esi.
+static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
+ __ EnterApiExitFrame(argc);
+ if (__ emit_debug_code()) {
+ __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
+ }
+}
+
+
+// Calls an API function. Allocates HandleScope, extracts returned value
+// from handle and propagates exceptions. Clobbers ebx, edi and
+// caller-save registers. Restores context. On return removes
+// stack_space * kPointerSize (GCed).
+static void CallApiFunctionAndReturn(MacroAssembler* masm,
+ Register function_address,
+ ExternalReference thunk_ref,
+ Operand thunk_last_arg, int stack_space,
+ Operand* stack_space_operand,
+ Operand return_value_operand,
+ Operand* context_restore_operand) {
+ Isolate* isolate = masm->isolate();
+
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address(isolate);
+ ExternalReference limit_address =
+ ExternalReference::handle_scope_limit_address(isolate);
+ ExternalReference level_address =
+ ExternalReference::handle_scope_level_address(isolate);
+
+ DCHECK(edx.is(function_address));
+ // Allocate HandleScope in callee-save registers.
+ __ mov(ebx, Operand::StaticVariable(next_address));
+ __ mov(edi, Operand::StaticVariable(limit_address));
+ __ add(Operand::StaticVariable(level_address), Immediate(1));
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(masm, StackFrame::MANUAL);
+ __ PushSafepointRegisters();
+ __ PrepareCallCFunction(1, eax);
+ __ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate)));
+ __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
+ 1);
+ __ PopSafepointRegisters();
+ }
+
+
+ Label profiler_disabled;
+ Label end_profiler_check;
+ __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
+ __ cmpb(Operand(eax, 0), Immediate(0));
+ __ j(zero, &profiler_disabled);
+
+ // Additional parameter is the address of the actual getter function.
+ __ mov(thunk_last_arg, function_address);
+ // Call the api function.
+ __ mov(eax, Immediate(thunk_ref));
+ __ call(eax);
+ __ jmp(&end_profiler_check);
+
+ __ bind(&profiler_disabled);
+ // Call the api function.
+ __ call(function_address);
+ __ bind(&end_profiler_check);
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(masm, StackFrame::MANUAL);
+ __ PushSafepointRegisters();
+ __ PrepareCallCFunction(1, eax);
+ __ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate)));
+ __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
+ 1);
+ __ PopSafepointRegisters();
+ }
+
+ Label prologue;
+ // Load the value from ReturnValue
+ __ mov(eax, return_value_operand);
+
+ Label promote_scheduled_exception;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+
+ __ bind(&prologue);
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ __ mov(Operand::StaticVariable(next_address), ebx);
+ __ sub(Operand::StaticVariable(level_address), Immediate(1));
+ __ Assert(above_equal, kInvalidHandleScopeLevel);
+ __ cmp(edi, Operand::StaticVariable(limit_address));
+ __ j(not_equal, &delete_allocated_handles);
+
+ // Leave the API exit frame.
+ __ bind(&leave_exit_frame);
+ bool restore_context = context_restore_operand != NULL;
+ if (restore_context) {
+ __ mov(esi, *context_restore_operand);
+ }
+ if (stack_space_operand != nullptr) {
+ __ mov(ebx, *stack_space_operand);
+ }
+ __ LeaveApiExitFrame(!restore_context);
+
+ // Check if the function scheduled an exception.
+ ExternalReference scheduled_exception_address =
+ ExternalReference::scheduled_exception_address(isolate);
+ __ cmp(Operand::StaticVariable(scheduled_exception_address),
+ Immediate(isolate->factory()->the_hole_value()));
+ __ j(not_equal, &promote_scheduled_exception);
+
+#if DEBUG
+ // Check if the function returned a valid JavaScript value.
+ Label ok;
+ Register return_value = eax;
+ Register map = ecx;
+
+ __ JumpIfSmi(return_value, &ok, Label::kNear);
+ __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
+
+ __ CmpInstanceType(map, LAST_NAME_TYPE);
+ __ j(below_equal, &ok, Label::kNear);
+
+ __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
+ __ j(above_equal, &ok, Label::kNear);
+
+ __ cmp(map, isolate->factory()->heap_number_map());
+ __ j(equal, &ok, Label::kNear);
+
+ __ cmp(return_value, isolate->factory()->undefined_value());
+ __ j(equal, &ok, Label::kNear);
+
+ __ cmp(return_value, isolate->factory()->true_value());
+ __ j(equal, &ok, Label::kNear);
+
+ __ cmp(return_value, isolate->factory()->false_value());
+ __ j(equal, &ok, Label::kNear);
+
+ __ cmp(return_value, isolate->factory()->null_value());
+ __ j(equal, &ok, Label::kNear);
+
+ __ Abort(kAPICallReturnedInvalidObject);
+
+ __ bind(&ok);
+#endif
+
+ if (stack_space_operand != nullptr) {
+ DCHECK_EQ(0, stack_space);
+ __ pop(ecx);
+ __ add(esp, ebx);
+ __ jmp(ecx);
+ } else {
+ __ ret(stack_space * kPointerSize);
+ }
+
+ // Re-throw by promoting a scheduled exception.
+ __ bind(&promote_scheduled_exception);
+ __ TailCallRuntime(Runtime::kPromoteScheduledException);
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ ExternalReference delete_extensions =
+ ExternalReference::delete_handle_scope_extensions(isolate);
+ __ bind(&delete_allocated_handles);
+ __ mov(Operand::StaticVariable(limit_address), edi);
+ __ mov(edi, eax);
+ __ mov(Operand(esp, 0),
+ Immediate(ExternalReference::isolate_address(isolate)));
+ __ mov(eax, Immediate(delete_extensions));
+ __ call(eax);
+ __ mov(eax, edi);
+ __ jmp(&leave_exit_frame);
+}
+
+void CallApiCallbackStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- edi : callee
+ // -- ebx : call_data
+ // -- ecx : holder
+ // -- edx : api_function_address
+ // -- esi : context
+ // --
+ // -- esp[0] : return address
+ // -- esp[4] : last argument
+ // -- ...
+ // -- esp[argc * 4] : first argument
+ // -- esp[(argc + 1) * 4] : receiver
+ // -----------------------------------
+
+ Register callee = edi;
+ Register call_data = ebx;
+ Register holder = ecx;
+ Register api_function_address = edx;
+ Register context = esi;
+ Register return_address = eax;
+
+ typedef FunctionCallbackArguments FCA;
+
+ STATIC_ASSERT(FCA::kContextSaveIndex == 6);
+ STATIC_ASSERT(FCA::kCalleeIndex == 5);
+ STATIC_ASSERT(FCA::kDataIndex == 4);
+ STATIC_ASSERT(FCA::kReturnValueOffset == 3);
+ STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
+ STATIC_ASSERT(FCA::kIsolateIndex == 1);
+ STATIC_ASSERT(FCA::kHolderIndex == 0);
+ STATIC_ASSERT(FCA::kNewTargetIndex == 7);
+ STATIC_ASSERT(FCA::kArgsLength == 8);
+
+ __ pop(return_address);
+
+ // new target
+ __ PushRoot(Heap::kUndefinedValueRootIndex);
+
+ // context save.
+ __ push(context);
+
+ // callee
+ __ push(callee);
+
+ // call data
+ __ push(call_data);
+
+ Register scratch = call_data;
+ if (!call_data_undefined()) {
+ // return value
+ __ push(Immediate(masm->isolate()->factory()->undefined_value()));
+ // return value default
+ __ push(Immediate(masm->isolate()->factory()->undefined_value()));
+ } else {
+ // return value
+ __ push(scratch);
+ // return value default
+ __ push(scratch);
+ }
+ // isolate
+ __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
+ // holder
+ __ push(holder);
+
+ __ mov(scratch, esp);
+
+ // push return address
+ __ push(return_address);
+
+ if (!is_lazy()) {
+ // load context from callee
+ __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
+ }
+
+ // API function gets reference to the v8::Arguments. If CPU profiler
+ // is enabled wrapper function will be called and we need to pass
+ // address of the callback as additional parameter, always allocate
+ // space for it.
+ const int kApiArgc = 1 + 1;
+
+ // Allocate the v8::Arguments structure in the arguments' space since
+ // it's not controlled by GC.
+ const int kApiStackSpace = 3;
+
+ PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
+
+ // FunctionCallbackInfo::implicit_args_.
+ __ mov(ApiParameterOperand(2), scratch);
+ __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
+ // FunctionCallbackInfo::values_.
+ __ mov(ApiParameterOperand(3), scratch);
+ // FunctionCallbackInfo::length_.
+ __ Move(ApiParameterOperand(4), Immediate(argc()));
+
+ // v8::InvocationCallback's argument.
+ __ lea(scratch, ApiParameterOperand(2));
+ __ mov(ApiParameterOperand(0), scratch);
+
+ ExternalReference thunk_ref =
+ ExternalReference::invoke_function_callback(masm->isolate());
+
+ Operand context_restore_operand(ebp,
+ (2 + FCA::kContextSaveIndex) * kPointerSize);
+ // Stores return the first js argument
+ int return_value_offset = 0;
+ if (is_store()) {
+ return_value_offset = 2 + FCA::kArgsLength;
+ } else {
+ return_value_offset = 2 + FCA::kReturnValueOffset;
+ }
+ Operand return_value_operand(ebp, return_value_offset * kPointerSize);
+ int stack_space = 0;
+ Operand length_operand = ApiParameterOperand(4);
+ Operand* stack_space_operand = &length_operand;
+ stack_space = argc() + FCA::kArgsLength + 1;
+ stack_space_operand = nullptr;
+ CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
+ ApiParameterOperand(1), stack_space,
+ stack_space_operand, return_value_operand,
+ &context_restore_operand);
+}
+
+
+void CallApiGetterStub::Generate(MacroAssembler* masm) {
+ // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
+ // name below the exit frame to make GC aware of them.
+ STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
+ STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
+ STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
+ STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
+ STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
+ STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
+ STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
+ STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
+
+ Register receiver = ApiGetterDescriptor::ReceiverRegister();
+ Register holder = ApiGetterDescriptor::HolderRegister();
+ Register callback = ApiGetterDescriptor::CallbackRegister();
+ Register scratch = ebx;
+ DCHECK(!AreAliased(receiver, holder, callback, scratch));
+
+ __ pop(scratch); // Pop return address to extend the frame.
+ __ push(receiver);
+ __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
+ __ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue
+ // ReturnValue default value
+ __ PushRoot(Heap::kUndefinedValueRootIndex);
+ __ push(Immediate(ExternalReference::isolate_address(isolate())));
+ __ push(holder);
+ __ push(Immediate(Smi::kZero)); // should_throw_on_error -> false
+ __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
+ __ push(scratch); // Restore return address.
+
+ // v8::PropertyCallbackInfo::args_ array and name handle.
+ const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
+
+ // Allocate v8::PropertyCallbackInfo object, arguments for callback and
+ // space for optional callback address parameter (in case CPU profiler is
+ // active) in non-GCed stack space.
+ const int kApiArgc = 3 + 1;
+
+ // Load address of v8::PropertyAccessorInfo::args_ array.
+ __ lea(scratch, Operand(esp, 2 * kPointerSize));
+
+ PrepareCallApiFunction(masm, kApiArgc);
+ // Create v8::PropertyCallbackInfo object on the stack and initialize
+ // it's args_ field.
+ Operand info_object = ApiParameterOperand(3);
+ __ mov(info_object, scratch);
+
+ // Name as handle.
+ __ sub(scratch, Immediate(kPointerSize));
+ __ mov(ApiParameterOperand(0), scratch);
+ // Arguments pointer.
+ __ lea(scratch, info_object);
+ __ mov(ApiParameterOperand(1), scratch);
+ // Reserve space for optional callback address parameter.
+ Operand thunk_last_arg = ApiParameterOperand(2);
+
+ ExternalReference thunk_ref =
+ ExternalReference::invoke_accessor_getter_callback(isolate());
+
+ __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
+ Register function_address = edx;
+ __ mov(function_address,
+ FieldOperand(scratch, Foreign::kForeignAddressOffset));
+ // +3 is to skip prolog, return address and name handle.
+ Operand return_value_operand(
+ ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
+ CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
+ kStackUnwindSpace, nullptr, return_value_operand,
+ NULL);
+}
+
+#undef __
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/code-stubs-x87.h 2017-12-25 17:42:57.221465559 +0100
@@ -0,0 +1,351 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_CODE_STUBS_X87_H_
+#define V8_X87_CODE_STUBS_X87_H_
+
+namespace v8 {
+namespace internal {
+
+
+void ArrayNativeCode(MacroAssembler* masm,
+ bool construct_call,
+ Label* call_generic_code);
+
+
+class StringHelper : public AllStatic {
+ public:
+ // Compares two flat one byte strings and returns result in eax.
+ static void GenerateCompareFlatOneByteStrings(MacroAssembler* masm,
+ Register left, Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3);
+
+ // Compares two flat one byte strings for equality and returns result in eax.
+ static void GenerateFlatOneByteStringEquals(MacroAssembler* masm,
+ Register left, Register right,
+ Register scratch1,
+ Register scratch2);
+
+ private:
+ static void GenerateOneByteCharsCompareLoop(
+ MacroAssembler* masm, Register left, Register right, Register length,
+ Register scratch, Label* chars_not_equal,
+ Label::Distance chars_not_equal_near = Label::kFar);
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
+};
+
+
+class NameDictionaryLookupStub: public PlatformCodeStub {
+ public:
+ enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
+
+ NameDictionaryLookupStub(Isolate* isolate, Register dictionary,
+ Register result, Register index, LookupMode mode)
+ : PlatformCodeStub(isolate) {
+ minor_key_ = DictionaryBits::encode(dictionary.code()) |
+ ResultBits::encode(result.code()) |
+ IndexBits::encode(index.code()) | LookupModeBits::encode(mode);
+ }
+
+ static void GenerateNegativeLookup(MacroAssembler* masm,
+ Label* miss,
+ Label* done,
+ Register properties,
+ Handle<Name> name,
+ Register r0);
+
+ bool SometimesSetsUpAFrame() override { return false; }
+
+ private:
+ static const int kInlinedProbes = 4;
+ static const int kTotalProbes = 20;
+
+ static const int kCapacityOffset =
+ NameDictionary::kHeaderSize +
+ NameDictionary::kCapacityIndex * kPointerSize;
+
+ static const int kElementsStartOffset =
+ NameDictionary::kHeaderSize +
+ NameDictionary::kElementsStartIndex * kPointerSize;
+
+ Register dictionary() const {
+ return Register::from_code(DictionaryBits::decode(minor_key_));
+ }
+
+ Register result() const {
+ return Register::from_code(ResultBits::decode(minor_key_));
+ }
+
+ Register index() const {
+ return Register::from_code(IndexBits::decode(minor_key_));
+ }
+
+ LookupMode mode() const { return LookupModeBits::decode(minor_key_); }
+
+ class DictionaryBits: public BitField<int, 0, 3> {};
+ class ResultBits: public BitField<int, 3, 3> {};
+ class IndexBits: public BitField<int, 6, 3> {};
+ class LookupModeBits: public BitField<LookupMode, 9, 1> {};
+
+ DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
+ DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub);
+};
+
+
+class RecordWriteStub: public PlatformCodeStub {
+ public:
+ RecordWriteStub(Isolate* isolate, Register object, Register value,
+ Register address, RememberedSetAction remembered_set_action,
+ SaveFPRegsMode fp_mode)
+ : PlatformCodeStub(isolate),
+ regs_(object, // An input reg.
+ address, // An input reg.
+ value) { // One scratch reg.
+ minor_key_ = ObjectBits::encode(object.code()) |
+ ValueBits::encode(value.code()) |
+ AddressBits::encode(address.code()) |
+ RememberedSetActionBits::encode(remembered_set_action) |
+ SaveFPRegsModeBits::encode(fp_mode);
+ }
+
+ RecordWriteStub(uint32_t key, Isolate* isolate)
+ : PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {}
+
+ enum Mode {
+ STORE_BUFFER_ONLY,
+ INCREMENTAL,
+ INCREMENTAL_COMPACTION
+ };
+
+ bool SometimesSetsUpAFrame() override { return false; }
+
+ static const byte kTwoByteNopInstruction = 0x3c; // Cmpb al, #imm8.
+ static const byte kTwoByteJumpInstruction = 0xeb; // Jmp #imm8.
+
+ static const byte kFiveByteNopInstruction = 0x3d; // Cmpl eax, #imm32.
+ static const byte kFiveByteJumpInstruction = 0xe9; // Jmp #imm32.
+
+ static Mode GetMode(Code* stub) {
+ byte first_instruction = stub->instruction_start()[0];
+ byte second_instruction = stub->instruction_start()[2];
+
+ if (first_instruction == kTwoByteJumpInstruction) {
+ return INCREMENTAL;
+ }
+
+ DCHECK(first_instruction == kTwoByteNopInstruction);
+
+ if (second_instruction == kFiveByteJumpInstruction) {
+ return INCREMENTAL_COMPACTION;
+ }
+
+ DCHECK(second_instruction == kFiveByteNopInstruction);
+
+ return STORE_BUFFER_ONLY;
+ }
+
+ static void Patch(Code* stub, Mode mode) {
+ switch (mode) {
+ case STORE_BUFFER_ONLY:
+ DCHECK(GetMode(stub) == INCREMENTAL ||
+ GetMode(stub) == INCREMENTAL_COMPACTION);
+ stub->instruction_start()[0] = kTwoByteNopInstruction;
+ stub->instruction_start()[2] = kFiveByteNopInstruction;
+ break;
+ case INCREMENTAL:
+ DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
+ stub->instruction_start()[0] = kTwoByteJumpInstruction;
+ break;
+ case INCREMENTAL_COMPACTION:
+ DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
+ stub->instruction_start()[0] = kTwoByteNopInstruction;
+ stub->instruction_start()[2] = kFiveByteJumpInstruction;
+ break;
+ }
+ DCHECK(GetMode(stub) == mode);
+ Assembler::FlushICache(stub->GetIsolate(), stub->instruction_start(), 7);
+ }
+
+ DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
+
+ private:
+ // This is a helper class for freeing up 3 scratch registers, where the third
+ // is always ecx (needed for shift operations). The input is two registers
+ // that must be preserved and one scratch register provided by the caller.
+ class RegisterAllocation {
+ public:
+ RegisterAllocation(Register object,
+ Register address,
+ Register scratch0)
+ : object_orig_(object),
+ address_orig_(address),
+ scratch0_orig_(scratch0),
+ object_(object),
+ address_(address),
+ scratch0_(scratch0) {
+ DCHECK(!AreAliased(scratch0, object, address, no_reg));
+ scratch1_ = GetRegThatIsNotEcxOr(object_, address_, scratch0_);
+ if (scratch0.is(ecx)) {
+ scratch0_ = GetRegThatIsNotEcxOr(object_, address_, scratch1_);
+ }
+ if (object.is(ecx)) {
+ object_ = GetRegThatIsNotEcxOr(address_, scratch0_, scratch1_);
+ }
+ if (address.is(ecx)) {
+ address_ = GetRegThatIsNotEcxOr(object_, scratch0_, scratch1_);
+ }
+ DCHECK(!AreAliased(scratch0_, object_, address_, ecx));
+ }
+
+ void Save(MacroAssembler* masm) {
+ DCHECK(!address_orig_.is(object_));
+ DCHECK(object_.is(object_orig_) || address_.is(address_orig_));
+ DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
+ DCHECK(!AreAliased(object_orig_, address_, scratch1_, scratch0_));
+ DCHECK(!AreAliased(object_, address_orig_, scratch1_, scratch0_));
+ // We don't have to save scratch0_orig_ because it was given to us as
+ // a scratch register. But if we had to switch to a different reg then
+ // we should save the new scratch0_.
+ if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_);
+ if (!ecx.is(scratch0_orig_) &&
+ !ecx.is(object_orig_) &&
+ !ecx.is(address_orig_)) {
+ masm->push(ecx);
+ }
+ masm->push(scratch1_);
+ if (!address_.is(address_orig_)) {
+ masm->push(address_);
+ masm->mov(address_, address_orig_);
+ }
+ if (!object_.is(object_orig_)) {
+ masm->push(object_);
+ masm->mov(object_, object_orig_);
+ }
+ }
+
+ void Restore(MacroAssembler* masm) {
+ // These will have been preserved the entire time, so we just need to move
+ // them back. Only in one case is the orig_ reg different from the plain
+ // one, since only one of them can alias with ecx.
+ if (!object_.is(object_orig_)) {
+ masm->mov(object_orig_, object_);
+ masm->pop(object_);
+ }
+ if (!address_.is(address_orig_)) {
+ masm->mov(address_orig_, address_);
+ masm->pop(address_);
+ }
+ masm->pop(scratch1_);
+ if (!ecx.is(scratch0_orig_) &&
+ !ecx.is(object_orig_) &&
+ !ecx.is(address_orig_)) {
+ masm->pop(ecx);
+ }
+ if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_);
+ }
+
+ // If we have to call into C then we need to save and restore all caller-
+ // saved registers that were not already preserved. The caller saved
+ // registers are eax, ecx and edx. The three scratch registers (incl. ecx)
+ // will be restored by other means so we don't bother pushing them here.
+ void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
+ masm->PushCallerSaved(mode, ecx, scratch0_, scratch1_);
+ }
+
+ inline void RestoreCallerSaveRegisters(MacroAssembler* masm,
+ SaveFPRegsMode mode) {
+ masm->PopCallerSaved(mode, ecx, scratch0_, scratch1_);
+ }
+
+ inline Register object() { return object_; }
+ inline Register address() { return address_; }
+ inline Register scratch0() { return scratch0_; }
+ inline Register scratch1() { return scratch1_; }
+
+ private:
+ Register object_orig_;
+ Register address_orig_;
+ Register scratch0_orig_;
+ Register object_;
+ Register address_;
+ Register scratch0_;
+ Register scratch1_;
+ // Third scratch register is always ecx.
+
+ Register GetRegThatIsNotEcxOr(Register r1,
+ Register r2,
+ Register r3) {
+ for (int i = 0; i < Register::kNumRegisters; i++) {
+ if (RegisterConfiguration::Crankshaft()->IsAllocatableGeneralCode(i)) {
+ Register candidate = Register::from_code(i);
+ if (candidate.is(ecx)) continue;
+ if (candidate.is(r1)) continue;
+ if (candidate.is(r2)) continue;
+ if (candidate.is(r3)) continue;
+ return candidate;
+ }
+ }
+ UNREACHABLE();
+ }
+ friend class RecordWriteStub;
+ };
+
+ enum OnNoNeedToInformIncrementalMarker {
+ kReturnOnNoNeedToInformIncrementalMarker,
+ kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
+ };
+
+ inline Major MajorKey() const final { return RecordWrite; }
+
+ void Generate(MacroAssembler* masm) override;
+ void GenerateIncremental(MacroAssembler* masm, Mode mode);
+ void CheckNeedsToInformIncrementalMarker(
+ MacroAssembler* masm,
+ OnNoNeedToInformIncrementalMarker on_no_need,
+ Mode mode);
+ void InformIncrementalMarker(MacroAssembler* masm);
+
+ void Activate(Code* code) override {
+ code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
+ }
+
+ Register object() const {
+ return Register::from_code(ObjectBits::decode(minor_key_));
+ }
+
+ Register value() const {
+ return Register::from_code(ValueBits::decode(minor_key_));
+ }
+
+ Register address() const {
+ return Register::from_code(AddressBits::decode(minor_key_));
+ }
+
+ RememberedSetAction remembered_set_action() const {
+ return RememberedSetActionBits::decode(minor_key_);
+ }
+
+ SaveFPRegsMode save_fp_regs_mode() const {
+ return SaveFPRegsModeBits::decode(minor_key_);
+ }
+
+ class ObjectBits: public BitField<int, 0, 3> {};
+ class ValueBits: public BitField<int, 3, 3> {};
+ class AddressBits: public BitField<int, 6, 3> {};
+ class RememberedSetActionBits: public BitField<RememberedSetAction, 9, 1> {};
+ class SaveFPRegsModeBits : public BitField<SaveFPRegsMode, 10, 1> {};
+
+ RegisterAllocation regs_;
+
+ DISALLOW_COPY_AND_ASSIGN(RecordWriteStub);
+};
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_CODE_STUBS_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/cpu-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/cpu-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/cpu-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/cpu-x87.cc 2017-12-25 17:42:57.221465559 +0100
@@ -0,0 +1,43 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// CPU specific code for ia32 independent of OS goes here.
+
+#ifdef __GNUC__
+#include "src/third_party/valgrind/valgrind.h"
+#endif
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/assembler.h"
+#include "src/macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+void CpuFeatures::FlushICache(void* start, size_t size) {
+ // No need to flush the instruction cache on Intel. On Intel instruction
+ // cache flushing is only necessary when multiple cores running the same
+ // code simultaneously. V8 (and JavaScript) is single threaded and when code
+ // is patched on an intel CPU the core performing the patching will have its
+ // own instruction cache updated automatically.
+
+ // If flushing of the instruction cache becomes necessary Windows has the
+ // API function FlushInstructionCache.
+
+ // By default, valgrind only checks the stack for writes that might need to
+ // invalidate already cached translated code. This leads to random
+ // instability when code patches or moves are sometimes unnoticed. One
+ // solution is to run valgrind with --smc-check=all, but this comes at a big
+ // performance cost. We can notify valgrind to invalidate its cache.
+#ifdef VALGRIND_DISCARD_TRANSLATIONS
+ unsigned res = VALGRIND_DISCARD_TRANSLATIONS(start, size);
+ USE(res);
+#endif
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/deoptimizer-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/deoptimizer-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/deoptimizer-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/deoptimizer-x87.cc 2017-12-25 17:42:57.222465544 +0100
@@ -0,0 +1,412 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/codegen.h"
+#include "src/deoptimizer.h"
+#include "src/full-codegen/full-codegen.h"
+#include "src/register-configuration.h"
+#include "src/safepoint-table.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+const int Deoptimizer::table_entry_size_ = 10;
+
+
+int Deoptimizer::patch_size() {
+ return Assembler::kCallInstructionLength;
+}
+
+
+void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
+ Isolate* isolate = code->GetIsolate();
+ HandleScope scope(isolate);
+
+ // Compute the size of relocation information needed for the code
+ // patching in Deoptimizer::PatchCodeForDeoptimization below.
+ int min_reloc_size = 0;
+ int prev_pc_offset = 0;
+ DeoptimizationInputData* deopt_data =
+ DeoptimizationInputData::cast(code->deoptimization_data());
+ for (int i = 0; i < deopt_data->DeoptCount(); i++) {
+ int pc_offset = deopt_data->Pc(i)->value();
+ if (pc_offset == -1) continue;
+ pc_offset = pc_offset + 1; // We will encode the pc offset after the call.
+ DCHECK_GE(pc_offset, prev_pc_offset);
+ int pc_delta = pc_offset - prev_pc_offset;
+ // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
+ // if encodable with small pc delta encoding and up to 6 bytes
+ // otherwise.
+ if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
+ min_reloc_size += 2;
+ } else {
+ min_reloc_size += 6;
+ }
+ prev_pc_offset = pc_offset;
+ }
+
+ // If the relocation information is not big enough we create a new
+ // relocation info object that is padded with comments to make it
+ // big enough for lazy doptimization.
+ int reloc_length = code->relocation_info()->length();
+ if (min_reloc_size > reloc_length) {
+ int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
+ // Padding needed.
+ int min_padding = min_reloc_size - reloc_length;
+ // Number of comments needed to take up at least that much space.
+ int additional_comments =
+ (min_padding + comment_reloc_size - 1) / comment_reloc_size;
+ // Actual padding size.
+ int padding = additional_comments * comment_reloc_size;
+ // Allocate new relocation info and copy old relocation to the end
+ // of the new relocation info array because relocation info is
+ // written and read backwards.
+ Factory* factory = isolate->factory();
+ Handle<ByteArray> new_reloc =
+ factory->NewByteArray(reloc_length + padding, TENURED);
+ MemCopy(new_reloc->GetDataStartAddress() + padding,
+ code->relocation_info()->GetDataStartAddress(), reloc_length);
+ // Create a relocation writer to write the comments in the padding
+ // space. Use position 0 for everything to ensure short encoding.
+ RelocInfoWriter reloc_info_writer(
+ new_reloc->GetDataStartAddress() + padding, 0);
+ intptr_t comment_string
+ = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
+ RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
+ for (int i = 0; i < additional_comments; ++i) {
+#ifdef DEBUG
+ byte* pos_before = reloc_info_writer.pos();
+#endif
+ reloc_info_writer.Write(&rinfo);
+ DCHECK(RelocInfo::kMinRelocCommentSize ==
+ pos_before - reloc_info_writer.pos());
+ }
+ // Replace relocation information on the code object.
+ code->set_relocation_info(*new_reloc);
+ }
+}
+
+
+void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
+ Address code_start_address = code->instruction_start();
+
+ // Fail hard and early if we enter this code object again.
+ byte* pointer = code->FindCodeAgeSequence();
+ if (pointer != NULL) {
+ pointer += kNoCodeAgeSequenceLength;
+ } else {
+ pointer = code->instruction_start();
+ }
+ CodePatcher patcher(isolate, pointer, 1);
+ patcher.masm()->int3();
+
+ DeoptimizationInputData* data =
+ DeoptimizationInputData::cast(code->deoptimization_data());
+ int osr_offset = data->OsrPcOffset()->value();
+ if (osr_offset > 0) {
+ CodePatcher osr_patcher(isolate, code_start_address + osr_offset, 1);
+ osr_patcher.masm()->int3();
+ }
+
+ // We will overwrite the code's relocation info in-place. Relocation info
+ // is written backward. The relocation info is the payload of a byte
+ // array. Later on we will slide this to the start of the byte array and
+ // create a filler object in the remaining space.
+ ByteArray* reloc_info = code->relocation_info();
+ Address reloc_end_address = reloc_info->address() + reloc_info->Size();
+ RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
+
+ // Since the call is a relative encoding, write new
+ // reloc info. We do not need any of the existing reloc info because the
+ // existing code will not be used again (we zap it in debug builds).
+ //
+ // Emit call to lazy deoptimization at all lazy deopt points.
+ DeoptimizationInputData* deopt_data =
+ DeoptimizationInputData::cast(code->deoptimization_data());
+#ifdef DEBUG
+ Address prev_call_address = NULL;
+#endif
+ // For each LLazyBailout instruction insert a call to the corresponding
+ // deoptimization entry.
+ for (int i = 0; i < deopt_data->DeoptCount(); i++) {
+ if (deopt_data->Pc(i)->value() == -1) continue;
+ // Patch lazy deoptimization entry.
+ Address call_address = code_start_address + deopt_data->Pc(i)->value();
+ CodePatcher patcher(isolate, call_address, patch_size());
+ Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
+ patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
+ // We use RUNTIME_ENTRY for deoptimization bailouts.
+ RelocInfo rinfo(isolate, call_address + 1, // 1 after the call opcode.
+ RelocInfo::RUNTIME_ENTRY,
+ reinterpret_cast<intptr_t>(deopt_entry), NULL);
+ reloc_info_writer.Write(&rinfo);
+ DCHECK_GE(reloc_info_writer.pos(),
+ reloc_info->address() + ByteArray::kHeaderSize);
+ DCHECK(prev_call_address == NULL ||
+ call_address >= prev_call_address + patch_size());
+ DCHECK(call_address + patch_size() <= code->instruction_end());
+#ifdef DEBUG
+ prev_call_address = call_address;
+#endif
+ }
+
+ // Move the relocation info to the beginning of the byte array.
+ const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
+ MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);
+
+ // Right trim the relocation info to free up remaining space.
+ const int delta = reloc_info->length() - new_reloc_length;
+ if (delta > 0) {
+ isolate->heap()->RightTrimFixedArray(reloc_info, delta);
+ }
+}
+
+
+#define __ masm()->
+
+void Deoptimizer::TableEntryGenerator::Generate() {
+ GeneratePrologue();
+
+ // Save all general purpose registers before messing with them.
+ const int kNumberOfRegisters = Register::kNumRegisters;
+
+ const int kDoubleRegsSize = kDoubleSize * X87Register::kMaxNumRegisters;
+
+ // Reserve space for x87 fp registers.
+ __ sub(esp, Immediate(kDoubleRegsSize));
+
+ __ pushad();
+
+ ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress,
+ isolate());
+ __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
+
+ // GP registers are safe to use now.
+ // Save used x87 fp registers in correct position of previous reserve space.
+ Label loop, done;
+ // Get the layout of x87 stack.
+ __ sub(esp, Immediate(kPointerSize));
+ __ fistp_s(MemOperand(esp, 0));
+ __ pop(eax);
+ // Preserve stack layout in edi
+ __ mov(edi, eax);
+ // Get the x87 stack depth, the first 3 bits.
+ __ mov(ecx, eax);
+ __ and_(ecx, 0x7);
+ __ j(zero, &done, Label::kNear);
+
+ __ bind(&loop);
+ __ shr(eax, 0x3);
+ __ mov(ebx, eax);
+ __ and_(ebx, 0x7); // Extract the st_x index into ebx.
+ // Pop TOS to the correct position. The disp(0x20) is due to pushad.
+ // The st_i should be saved to (esp + ebx * kDoubleSize + 0x20).
+ __ fstp_d(Operand(esp, ebx, times_8, 0x20));
+ __ dec(ecx); // Decrease stack depth.
+ __ j(not_zero, &loop, Label::kNear);
+ __ bind(&done);
+
+ const int kSavedRegistersAreaSize =
+ kNumberOfRegisters * kPointerSize + kDoubleRegsSize;
+
+ // Get the bailout id from the stack.
+ __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
+
+ // Get the address of the location in the code object
+ // and compute the fp-to-sp delta in register edx.
+ __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
+ __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
+
+ __ sub(edx, ebp);
+ __ neg(edx);
+
+ __ push(edi);
+ // Allocate a new deoptimizer object.
+ __ PrepareCallCFunction(6, eax);
+ __ mov(eax, Immediate(0));
+ Label context_check;
+ __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
+ __ JumpIfSmi(edi, &context_check);
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ bind(&context_check);
+ __ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
+ __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
+ __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
+ __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
+ __ mov(Operand(esp, 5 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ {
+ AllowExternalCallThatCantCauseGC scope(masm());
+ __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
+ }
+
+ __ pop(edi);
+
+ // Preserve deoptimizer object in register eax and get the input
+ // frame descriptor pointer.
+ __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
+
+ // Fill in the input registers.
+ for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
+ int offset = (i * kPointerSize) + FrameDescription::registers_offset();
+ __ pop(Operand(ebx, offset));
+ }
+
+ int double_regs_offset = FrameDescription::double_registers_offset();
+ const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
+ // Fill in the double input registers.
+ for (int i = 0; i < X87Register::kMaxNumAllocatableRegisters; ++i) {
+ int code = config->GetAllocatableDoubleCode(i);
+ int dst_offset = code * kDoubleSize + double_regs_offset;
+ int src_offset = code * kDoubleSize;
+ __ fld_d(Operand(esp, src_offset));
+ __ fstp_d(Operand(ebx, dst_offset));
+ }
+
+ // Clear FPU all exceptions.
+ // TODO(ulan): Find out why the TOP register is not zero here in some cases,
+ // and check that the generated code never deoptimizes with unbalanced stack.
+ __ fnclex();
+
+ // Remove the bailout id, return address and the double registers.
+ __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
+
+ // Compute a pointer to the unwinding limit in register ecx; that is
+ // the first stack slot not part of the input frame.
+ __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
+ __ add(ecx, esp);
+
+ // Unwind the stack down to - but not including - the unwinding
+ // limit and copy the contents of the activation frame to the input
+ // frame description.
+ __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
+ Label pop_loop_header;
+ __ jmp(&pop_loop_header);
+ Label pop_loop;
+ __ bind(&pop_loop);
+ __ pop(Operand(edx, 0));
+ __ add(edx, Immediate(sizeof(uint32_t)));
+ __ bind(&pop_loop_header);
+ __ cmp(ecx, esp);
+ __ j(not_equal, &pop_loop);
+
+ // Compute the output frame in the deoptimizer.
+ __ push(edi);
+ __ push(eax);
+ __ PrepareCallCFunction(1, ebx);
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+ {
+ AllowExternalCallThatCantCauseGC scope(masm());
+ __ CallCFunction(
+ ExternalReference::compute_output_frames_function(isolate()), 1);
+ }
+ __ pop(eax);
+ __ pop(edi);
+ __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
+
+ // Replace the current (input) frame with the output frames.
+ Label outer_push_loop, inner_push_loop,
+ outer_loop_header, inner_loop_header;
+ // Outer loop state: eax = current FrameDescription**, edx = one past the
+ // last FrameDescription**.
+ __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
+ __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
+ __ lea(edx, Operand(eax, edx, times_4, 0));
+ __ jmp(&outer_loop_header);
+ __ bind(&outer_push_loop);
+ // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
+ __ mov(ebx, Operand(eax, 0));
+ __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
+ __ jmp(&inner_loop_header);
+ __ bind(&inner_push_loop);
+ __ sub(ecx, Immediate(sizeof(uint32_t)));
+ __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
+ __ bind(&inner_loop_header);
+ __ test(ecx, ecx);
+ __ j(not_zero, &inner_push_loop);
+ __ add(eax, Immediate(kPointerSize));
+ __ bind(&outer_loop_header);
+ __ cmp(eax, edx);
+ __ j(below, &outer_push_loop);
+
+
+ // In case of a failed STUB, we have to restore the x87 stack.
+ // x87 stack layout is in edi.
+ Label loop2, done2;
+ // Get the x87 stack depth, the first 3 bits.
+ __ mov(ecx, edi);
+ __ and_(ecx, 0x7);
+ __ j(zero, &done2, Label::kNear);
+
+ __ lea(ecx, Operand(ecx, ecx, times_2, 0));
+ __ bind(&loop2);
+ __ mov(eax, edi);
+ __ shr_cl(eax);
+ __ and_(eax, 0x7);
+ __ fld_d(Operand(ebx, eax, times_8, double_regs_offset));
+ __ sub(ecx, Immediate(0x3));
+ __ j(not_zero, &loop2, Label::kNear);
+ __ bind(&done2);
+
+ // Push state, pc, and continuation from the last output frame.
+ __ push(Operand(ebx, FrameDescription::state_offset()));
+ __ push(Operand(ebx, FrameDescription::pc_offset()));
+ __ push(Operand(ebx, FrameDescription::continuation_offset()));
+
+
+ // Push the registers from the last output frame.
+ for (int i = 0; i < kNumberOfRegisters; i++) {
+ int offset = (i * kPointerSize) + FrameDescription::registers_offset();
+ __ push(Operand(ebx, offset));
+ }
+
+ // Restore the registers from the stack.
+ __ popad();
+
+ // Return to the continuation point.
+ __ ret(0);
+}
+
+
+void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
+ // Create a sequence of deoptimization entries.
+ Label done;
+ for (int i = 0; i < count(); i++) {
+ int start = masm()->pc_offset();
+ USE(start);
+ __ push_imm32(i);
+ __ jmp(&done);
+ DCHECK(masm()->pc_offset() - start == table_entry_size_);
+ }
+ __ bind(&done);
+}
+
+
+void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
+ SetFrameSlot(offset, value);
+}
+
+
+void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
+ SetFrameSlot(offset, value);
+}
+
+
+void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
+ // No embedded constant pool support.
+ UNREACHABLE();
+}
+
+
+#undef __
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/disasm-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/disasm-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/disasm-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/disasm-x87.cc 2017-12-25 17:42:57.222465544 +0100
@@ -0,0 +1,1874 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <assert.h>
+#include <stdarg.h>
+#include <stdio.h>
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/base/compiler-specific.h"
+#include "src/disasm.h"
+
+namespace disasm {
+
+enum OperandOrder {
+ UNSET_OP_ORDER = 0,
+ REG_OPER_OP_ORDER,
+ OPER_REG_OP_ORDER
+};
+
+
+//------------------------------------------------------------------
+// Tables
+//------------------------------------------------------------------
+struct ByteMnemonic {
+ int b; // -1 terminates, otherwise must be in range (0..255)
+ const char* mnem;
+ OperandOrder op_order_;
+};
+
+static const ByteMnemonic two_operands_instr[] = {
+ {0x01, "add", OPER_REG_OP_ORDER}, {0x03, "add", REG_OPER_OP_ORDER},
+ {0x09, "or", OPER_REG_OP_ORDER}, {0x0B, "or", REG_OPER_OP_ORDER},
+ {0x13, "adc", REG_OPER_OP_ORDER}, {0x1B, "sbb", REG_OPER_OP_ORDER},
+ {0x21, "and", OPER_REG_OP_ORDER}, {0x23, "and", REG_OPER_OP_ORDER},
+ {0x29, "sub", OPER_REG_OP_ORDER}, {0x2A, "subb", REG_OPER_OP_ORDER},
+ {0x2B, "sub", REG_OPER_OP_ORDER}, {0x31, "xor", OPER_REG_OP_ORDER},
+ {0x33, "xor", REG_OPER_OP_ORDER}, {0x38, "cmpb", OPER_REG_OP_ORDER},
+ {0x39, "cmp", OPER_REG_OP_ORDER}, {0x3A, "cmpb", REG_OPER_OP_ORDER},
+ {0x3B, "cmp", REG_OPER_OP_ORDER}, {0x84, "test_b", REG_OPER_OP_ORDER},
+ {0x85, "test", REG_OPER_OP_ORDER}, {0x86, "xchg_b", REG_OPER_OP_ORDER},
+ {0x87, "xchg", REG_OPER_OP_ORDER}, {0x8A, "mov_b", REG_OPER_OP_ORDER},
+ {0x8B, "mov", REG_OPER_OP_ORDER}, {0x8D, "lea", REG_OPER_OP_ORDER},
+ {-1, "", UNSET_OP_ORDER}};
+
+static const ByteMnemonic zero_operands_instr[] = {
+ {0xC3, "ret", UNSET_OP_ORDER},
+ {0xC9, "leave", UNSET_OP_ORDER},
+ {0x90, "nop", UNSET_OP_ORDER},
+ {0xF4, "hlt", UNSET_OP_ORDER},
+ {0xCC, "int3", UNSET_OP_ORDER},
+ {0x60, "pushad", UNSET_OP_ORDER},
+ {0x61, "popad", UNSET_OP_ORDER},
+ {0x9C, "pushfd", UNSET_OP_ORDER},
+ {0x9D, "popfd", UNSET_OP_ORDER},
+ {0x9E, "sahf", UNSET_OP_ORDER},
+ {0x99, "cdq", UNSET_OP_ORDER},
+ {0x9B, "fwait", UNSET_OP_ORDER},
+ {0xFC, "cld", UNSET_OP_ORDER},
+ {0xAB, "stos", UNSET_OP_ORDER},
+ {-1, "", UNSET_OP_ORDER}
+};
+
+
+static const ByteMnemonic call_jump_instr[] = {
+ {0xE8, "call", UNSET_OP_ORDER},
+ {0xE9, "jmp", UNSET_OP_ORDER},
+ {-1, "", UNSET_OP_ORDER}
+};
+
+
+static const ByteMnemonic short_immediate_instr[] = {
+ {0x05, "add", UNSET_OP_ORDER},
+ {0x0D, "or", UNSET_OP_ORDER},
+ {0x15, "adc", UNSET_OP_ORDER},
+ {0x25, "and", UNSET_OP_ORDER},
+ {0x2D, "sub", UNSET_OP_ORDER},
+ {0x35, "xor", UNSET_OP_ORDER},
+ {0x3D, "cmp", UNSET_OP_ORDER},
+ {-1, "", UNSET_OP_ORDER}
+};
+
+
+// Generally we don't want to generate these because they are subject to partial
+// register stalls. They are included for completeness and because the cmp
+// variant is used by the RecordWrite stub. Because it does not update the
+// register it is not subject to partial register stalls.
+static ByteMnemonic byte_immediate_instr[] = {
+ {0x0c, "or", UNSET_OP_ORDER},
+ {0x24, "and", UNSET_OP_ORDER},
+ {0x34, "xor", UNSET_OP_ORDER},
+ {0x3c, "cmp", UNSET_OP_ORDER},
+ {-1, "", UNSET_OP_ORDER}
+};
+
+
+static const char* const jump_conditional_mnem[] = {
+ /*0*/ "jo", "jno", "jc", "jnc",
+ /*4*/ "jz", "jnz", "jna", "ja",
+ /*8*/ "js", "jns", "jpe", "jpo",
+ /*12*/ "jl", "jnl", "jng", "jg"
+};
+
+
+static const char* const set_conditional_mnem[] = {
+ /*0*/ "seto", "setno", "setc", "setnc",
+ /*4*/ "setz", "setnz", "setna", "seta",
+ /*8*/ "sets", "setns", "setpe", "setpo",
+ /*12*/ "setl", "setnl", "setng", "setg"
+};
+
+
+static const char* const conditional_move_mnem[] = {
+ /*0*/ "cmovo", "cmovno", "cmovc", "cmovnc",
+ /*4*/ "cmovz", "cmovnz", "cmovna", "cmova",
+ /*8*/ "cmovs", "cmovns", "cmovpe", "cmovpo",
+ /*12*/ "cmovl", "cmovnl", "cmovng", "cmovg"
+};
+
+
+enum InstructionType {
+ NO_INSTR,
+ ZERO_OPERANDS_INSTR,
+ TWO_OPERANDS_INSTR,
+ JUMP_CONDITIONAL_SHORT_INSTR,
+ REGISTER_INSTR,
+ MOVE_REG_INSTR,
+ CALL_JUMP_INSTR,
+ SHORT_IMMEDIATE_INSTR,
+ BYTE_IMMEDIATE_INSTR
+};
+
+
+struct InstructionDesc {
+ const char* mnem;
+ InstructionType type;
+ OperandOrder op_order_;
+};
+
+
+class InstructionTable {
+ public:
+ InstructionTable();
+ const InstructionDesc& Get(byte x) const { return instructions_[x]; }
+ static InstructionTable* get_instance() {
+ static InstructionTable table;
+ return &table;
+ }
+
+ private:
+ InstructionDesc instructions_[256];
+ void Clear();
+ void Init();
+ void CopyTable(const ByteMnemonic bm[], InstructionType type);
+ void SetTableRange(InstructionType type,
+ byte start,
+ byte end,
+ const char* mnem);
+ void AddJumpConditionalShort();
+};
+
+
+InstructionTable::InstructionTable() {
+ Clear();
+ Init();
+}
+
+
+void InstructionTable::Clear() {
+ for (int i = 0; i < 256; i++) {
+ instructions_[i].mnem = "";
+ instructions_[i].type = NO_INSTR;
+ instructions_[i].op_order_ = UNSET_OP_ORDER;
+ }
+}
+
+
+void InstructionTable::Init() {
+ CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
+ CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
+ CopyTable(call_jump_instr, CALL_JUMP_INSTR);
+ CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
+ CopyTable(byte_immediate_instr, BYTE_IMMEDIATE_INSTR);
+ AddJumpConditionalShort();
+ SetTableRange(REGISTER_INSTR, 0x40, 0x47, "inc");
+ SetTableRange(REGISTER_INSTR, 0x48, 0x4F, "dec");
+ SetTableRange(REGISTER_INSTR, 0x50, 0x57, "push");
+ SetTableRange(REGISTER_INSTR, 0x58, 0x5F, "pop");
+ SetTableRange(REGISTER_INSTR, 0x91, 0x97, "xchg eax,"); // 0x90 is nop.
+ SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, "mov");
+}
+
+
+void InstructionTable::CopyTable(const ByteMnemonic bm[],
+ InstructionType type) {
+ for (int i = 0; bm[i].b >= 0; i++) {
+ InstructionDesc* id = &instructions_[bm[i].b];
+ id->mnem = bm[i].mnem;
+ id->op_order_ = bm[i].op_order_;
+ DCHECK_EQ(NO_INSTR, id->type); // Information not already entered.
+ id->type = type;
+ }
+}
+
+
+void InstructionTable::SetTableRange(InstructionType type,
+ byte start,
+ byte end,
+ const char* mnem) {
+ for (byte b = start; b <= end; b++) {
+ InstructionDesc* id = &instructions_[b];
+ DCHECK_EQ(NO_INSTR, id->type); // Information not already entered.
+ id->mnem = mnem;
+ id->type = type;
+ }
+}
+
+
+void InstructionTable::AddJumpConditionalShort() {
+ for (byte b = 0x70; b <= 0x7F; b++) {
+ InstructionDesc* id = &instructions_[b];
+ DCHECK_EQ(NO_INSTR, id->type); // Information not already entered.
+ id->mnem = jump_conditional_mnem[b & 0x0F];
+ id->type = JUMP_CONDITIONAL_SHORT_INSTR;
+ }
+}
+
+
+// The X87 disassembler implementation.
+class DisassemblerX87 {
+ public:
+ DisassemblerX87(const NameConverter& converter,
+ bool abort_on_unimplemented = true)
+ : converter_(converter),
+ instruction_table_(InstructionTable::get_instance()),
+ tmp_buffer_pos_(0),
+ abort_on_unimplemented_(abort_on_unimplemented) {
+ tmp_buffer_[0] = '\0';
+ }
+
+ virtual ~DisassemblerX87() {}
+
+ // Writes one disassembled instruction into 'buffer' (0-terminated).
+ // Returns the length of the disassembled machine instruction in bytes.
+ int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);
+
+ private:
+ const NameConverter& converter_;
+ InstructionTable* instruction_table_;
+ v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
+ unsigned int tmp_buffer_pos_;
+ bool abort_on_unimplemented_;
+
+ enum {
+ eax = 0,
+ ecx = 1,
+ edx = 2,
+ ebx = 3,
+ esp = 4,
+ ebp = 5,
+ esi = 6,
+ edi = 7
+ };
+
+
+ enum ShiftOpcodeExtension {
+ kROL = 0,
+ kROR = 1,
+ kRCL = 2,
+ kRCR = 3,
+ kSHL = 4,
+ KSHR = 5,
+ kSAR = 7
+ };
+
+
+ const char* NameOfCPURegister(int reg) const {
+ return converter_.NameOfCPURegister(reg);
+ }
+
+
+ const char* NameOfByteCPURegister(int reg) const {
+ return converter_.NameOfByteCPURegister(reg);
+ }
+
+
+ const char* NameOfXMMRegister(int reg) const {
+ return converter_.NameOfXMMRegister(reg);
+ }
+
+
+ const char* NameOfAddress(byte* addr) const {
+ return converter_.NameOfAddress(addr);
+ }
+
+
+ // Disassembler helper functions.
+ static void get_modrm(byte data, int* mod, int* regop, int* rm) {
+ *mod = (data >> 6) & 3;
+ *regop = (data & 0x38) >> 3;
+ *rm = data & 7;
+ }
+
+
+ static void get_sib(byte data, int* scale, int* index, int* base) {
+ *scale = (data >> 6) & 3;
+ *index = (data >> 3) & 7;
+ *base = data & 7;
+ }
+
+ typedef const char* (DisassemblerX87::*RegisterNameMapping)(int reg) const;
+
+ int PrintRightOperandHelper(byte* modrmp, RegisterNameMapping register_name);
+ int PrintRightOperand(byte* modrmp);
+ int PrintRightByteOperand(byte* modrmp);
+ int PrintRightXMMOperand(byte* modrmp);
+ int PrintOperands(const char* mnem, OperandOrder op_order, byte* data);
+ int PrintImmediateOp(byte* data);
+ int F7Instruction(byte* data);
+ int D1D3C1Instruction(byte* data);
+ int JumpShort(byte* data);
+ int JumpConditional(byte* data, const char* comment);
+ int JumpConditionalShort(byte* data, const char* comment);
+ int SetCC(byte* data);
+ int CMov(byte* data);
+ int FPUInstruction(byte* data);
+ int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
+ int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
+ PRINTF_FORMAT(2, 3) void AppendToBuffer(const char* format, ...);
+
+ void UnimplementedInstruction() {
+ if (abort_on_unimplemented_) {
+ UNIMPLEMENTED();
+ } else {
+ AppendToBuffer("'Unimplemented Instruction'");
+ }
+ }
+};
+
+
+void DisassemblerX87::AppendToBuffer(const char* format, ...) {
+ v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
+ va_list args;
+ va_start(args, format);
+ int result = v8::internal::VSNPrintF(buf, format, args);
+ va_end(args);
+ tmp_buffer_pos_ += result;
+}
+
+int DisassemblerX87::PrintRightOperandHelper(
+ byte* modrmp,
+ RegisterNameMapping direct_register_name) {
+ int mod, regop, rm;
+ get_modrm(*modrmp, &mod, &regop, &rm);
+ RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
+ &DisassemblerX87::NameOfCPURegister;
+ switch (mod) {
+ case 0:
+ if (rm == ebp) {
+ int32_t disp = *reinterpret_cast<int32_t*>(modrmp+1);
+ AppendToBuffer("[0x%x]", disp);
+ return 5;
+ } else if (rm == esp) {
+ byte sib = *(modrmp + 1);
+ int scale, index, base;
+ get_sib(sib, &scale, &index, &base);
+ if (index == esp && base == esp && scale == 0 /*times_1*/) {
+ AppendToBuffer("[%s]", (this->*register_name)(rm));
+ return 2;
+ } else if (base == ebp) {
+ int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
+ AppendToBuffer("[%s*%d%s0x%x]",
+ (this->*register_name)(index),
+ 1 << scale,
+ disp < 0 ? "-" : "+",
+ disp < 0 ? -disp : disp);
+ return 6;
+ } else if (index != esp && base != ebp) {
+ // [base+index*scale]
+ AppendToBuffer("[%s+%s*%d]",
+ (this->*register_name)(base),
+ (this->*register_name)(index),
+ 1 << scale);
+ return 2;
+ } else {
+ UnimplementedInstruction();
+ return 1;
+ }
+ } else {
+ AppendToBuffer("[%s]", (this->*register_name)(rm));
+ return 1;
+ }
+ break;
+ case 1: // fall through
+ case 2:
+ if (rm == esp) {
+ byte sib = *(modrmp + 1);
+ int scale, index, base;
+ get_sib(sib, &scale, &index, &base);
+ int disp = mod == 2 ? *reinterpret_cast<int32_t*>(modrmp + 2)
+ : *reinterpret_cast<int8_t*>(modrmp + 2);
+ if (index == base && index == rm /*esp*/ && scale == 0 /*times_1*/) {
+ AppendToBuffer("[%s%s0x%x]",
+ (this->*register_name)(rm),
+ disp < 0 ? "-" : "+",
+ disp < 0 ? -disp : disp);
+ } else {
+ AppendToBuffer("[%s+%s*%d%s0x%x]",
+ (this->*register_name)(base),
+ (this->*register_name)(index),
+ 1 << scale,
+ disp < 0 ? "-" : "+",
+ disp < 0 ? -disp : disp);
+ }
+ return mod == 2 ? 6 : 3;
+ } else {
+ // No sib.
+ int disp = mod == 2 ? *reinterpret_cast<int32_t*>(modrmp + 1)
+ : *reinterpret_cast<int8_t*>(modrmp + 1);
+ AppendToBuffer("[%s%s0x%x]",
+ (this->*register_name)(rm),
+ disp < 0 ? "-" : "+",
+ disp < 0 ? -disp : disp);
+ return mod == 2 ? 5 : 2;
+ }
+ break;
+ case 3:
+ AppendToBuffer("%s", (this->*register_name)(rm));
+ return 1;
+ default:
+ UnimplementedInstruction();
+ return 1;
+ }
+ UNREACHABLE();
+}
+
+
+int DisassemblerX87::PrintRightOperand(byte* modrmp) {
+ return PrintRightOperandHelper(modrmp, &DisassemblerX87::NameOfCPURegister);
+}
+
+
+int DisassemblerX87::PrintRightByteOperand(byte* modrmp) {
+ return PrintRightOperandHelper(modrmp,
+ &DisassemblerX87::NameOfByteCPURegister);
+}
+
+
+int DisassemblerX87::PrintRightXMMOperand(byte* modrmp) {
+ return PrintRightOperandHelper(modrmp,
+ &DisassemblerX87::NameOfXMMRegister);
+}
+
+
+// Returns number of bytes used including the current *data.
+// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
+int DisassemblerX87::PrintOperands(const char* mnem,
+ OperandOrder op_order,
+ byte* data) {
+ byte modrm = *data;
+ int mod, regop, rm;
+ get_modrm(modrm, &mod, &regop, &rm);
+ int advance = 0;
+ switch (op_order) {
+ case REG_OPER_OP_ORDER: {
+ AppendToBuffer("%s %s,", mnem, NameOfCPURegister(regop));
+ advance = PrintRightOperand(data);
+ break;
+ }
+ case OPER_REG_OP_ORDER: {
+ AppendToBuffer("%s ", mnem);
+ advance = PrintRightOperand(data);
+ AppendToBuffer(",%s", NameOfCPURegister(regop));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return advance;
+}
+
+
+// Returns number of bytes used by machine instruction, including *data byte.
+// Writes immediate instructions to 'tmp_buffer_'.
+int DisassemblerX87::PrintImmediateOp(byte* data) {
+ bool sign_extension_bit = (*data & 0x02) != 0;
+ byte modrm = *(data+1);
+ int mod, regop, rm;
+ get_modrm(modrm, &mod, &regop, &rm);
+ const char* mnem = "Imm???";
+ switch (regop) {
+ case 0: mnem = "add"; break;
+ case 1: mnem = "or"; break;
+ case 2: mnem = "adc"; break;
+ case 4: mnem = "and"; break;
+ case 5: mnem = "sub"; break;
+ case 6: mnem = "xor"; break;
+ case 7: mnem = "cmp"; break;
+ default: UnimplementedInstruction();
+ }
+ AppendToBuffer("%s ", mnem);
+ int count = PrintRightOperand(data+1);
+ if (sign_extension_bit) {
+ AppendToBuffer(",0x%x", *(data + 1 + count));
+ return 1 + count + 1 /*int8*/;
+ } else {
+ AppendToBuffer(",0x%x", *reinterpret_cast<int32_t*>(data + 1 + count));
+ return 1 + count + 4 /*int32_t*/;
+ }
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::F7Instruction(byte* data) {
+ DCHECK_EQ(0xF7, *data);
+ byte modrm = *++data;
+ int mod, regop, rm;
+ get_modrm(modrm, &mod, &regop, &rm);
+ const char* mnem = NULL;
+ switch (regop) {
+ case 0:
+ mnem = "test";
+ break;
+ case 2:
+ mnem = "not";
+ break;
+ case 3:
+ mnem = "neg";
+ break;
+ case 4:
+ mnem = "mul";
+ break;
+ case 5:
+ mnem = "imul";
+ break;
+ case 6:
+ mnem = "div";
+ break;
+ case 7:
+ mnem = "idiv";
+ break;
+ default:
+ UnimplementedInstruction();
+ }
+ AppendToBuffer("%s ", mnem);
+ int count = PrintRightOperand(data);
+ if (regop == 0) {
+ AppendToBuffer(",0x%x", *reinterpret_cast<int32_t*>(data + count));
+ count += 4;
+ }
+ return 1 + count;
+}
+
+
+int DisassemblerX87::D1D3C1Instruction(byte* data) {
+ byte op = *data;
+ DCHECK(op == 0xD1 || op == 0xD3 || op == 0xC1);
+ byte modrm = *++data;
+ int mod, regop, rm;
+ get_modrm(modrm, &mod, &regop, &rm);
+ int imm8 = -1;
+ const char* mnem = NULL;
+ switch (regop) {
+ case kROL:
+ mnem = "rol";
+ break;
+ case kROR:
+ mnem = "ror";
+ break;
+ case kRCL:
+ mnem = "rcl";
+ break;
+ case kRCR:
+ mnem = "rcr";
+ break;
+ case kSHL:
+ mnem = "shl";
+ break;
+ case KSHR:
+ mnem = "shr";
+ break;
+ case kSAR:
+ mnem = "sar";
+ break;
+ default:
+ UnimplementedInstruction();
+ }
+ AppendToBuffer("%s ", mnem);
+ int count = PrintRightOperand(data);
+ if (op == 0xD1) {
+ imm8 = 1;
+ } else if (op == 0xC1) {
+ imm8 = *(data + 1);
+ count++;
+ } else if (op == 0xD3) {
+ // Shift/rotate by cl.
+ }
+ if (imm8 >= 0) {
+ AppendToBuffer(",%d", imm8);
+ } else {
+ AppendToBuffer(",cl");
+ }
+ return 1 + count;
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::JumpShort(byte* data) {
+ DCHECK_EQ(0xEB, *data);
+ byte b = *(data+1);
+ byte* dest = data + static_cast<int8_t>(b) + 2;
+ AppendToBuffer("jmp %s", NameOfAddress(dest));
+ return 2;
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::JumpConditional(byte* data, const char* comment) {
+ DCHECK_EQ(0x0F, *data);
+ byte cond = *(data+1) & 0x0F;
+ byte* dest = data + *reinterpret_cast<int32_t*>(data+2) + 6;
+ const char* mnem = jump_conditional_mnem[cond];
+ AppendToBuffer("%s %s", mnem, NameOfAddress(dest));
+ if (comment != NULL) {
+ AppendToBuffer(", %s", comment);
+ }
+ return 6; // includes 0x0F
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::JumpConditionalShort(byte* data, const char* comment) {
+ byte cond = *data & 0x0F;
+ byte b = *(data+1);
+ byte* dest = data + static_cast<int8_t>(b) + 2;
+ const char* mnem = jump_conditional_mnem[cond];
+ AppendToBuffer("%s %s", mnem, NameOfAddress(dest));
+ if (comment != NULL) {
+ AppendToBuffer(", %s", comment);
+ }
+ return 2;
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::SetCC(byte* data) {
+ DCHECK_EQ(0x0F, *data);
+ byte cond = *(data+1) & 0x0F;
+ const char* mnem = set_conditional_mnem[cond];
+ AppendToBuffer("%s ", mnem);
+ PrintRightByteOperand(data+2);
+ return 3; // Includes 0x0F.
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::CMov(byte* data) {
+ DCHECK_EQ(0x0F, *data);
+ byte cond = *(data + 1) & 0x0F;
+ const char* mnem = conditional_move_mnem[cond];
+ int op_size = PrintOperands(mnem, REG_OPER_OP_ORDER, data + 2);
+ return 2 + op_size; // includes 0x0F
+}
+
+
+// Returns number of bytes used, including *data.
+int DisassemblerX87::FPUInstruction(byte* data) {
+ byte escape_opcode = *data;
+ DCHECK_EQ(0xD8, escape_opcode & 0xF8);
+ byte modrm_byte = *(data+1);
+
+ if (modrm_byte >= 0xC0) {
+ return RegisterFPUInstruction(escape_opcode, modrm_byte);
+ } else {
+ return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
+ }
+}
+
+int DisassemblerX87::MemoryFPUInstruction(int escape_opcode,
+ int modrm_byte,
+ byte* modrm_start) {
+ const char* mnem = "?";
+ int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
+ switch (escape_opcode) {
+ case 0xD9: switch (regop) {
+ case 0: mnem = "fld_s"; break;
+ case 2: mnem = "fst_s"; break;
+ case 3: mnem = "fstp_s"; break;
+ case 5:
+ mnem = "fldcw";
+ break;
+ case 7:
+ mnem = "fnstcw";
+ break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDB: switch (regop) {
+ case 0: mnem = "fild_s"; break;
+ case 1: mnem = "fisttp_s"; break;
+ case 2: mnem = "fist_s"; break;
+ case 3: mnem = "fistp_s"; break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDC:
+ switch (regop) {
+ case 0:
+ mnem = "fadd_d";
+ break;
+ case 1:
+ mnem = "fmul_d";
+ break;
+ case 4:
+ mnem = "fsub_d";
+ break;
+ case 5:
+ mnem = "fsubr_d";
+ break;
+ case 6:
+ mnem = "fdiv_d";
+ break;
+ case 7:
+ mnem = "fdivr_d";
+ break;
+ default:
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDD: switch (regop) {
+ case 0: mnem = "fld_d"; break;
+ case 1: mnem = "fisttp_d"; break;
+ case 2: mnem = "fst_d"; break;
+ case 3: mnem = "fstp_d"; break;
+ case 4:
+ mnem = "frstor";
+ break;
+ case 6:
+ mnem = "fnsave";
+ break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDF: switch (regop) {
+ case 5: mnem = "fild_d"; break;
+ case 7: mnem = "fistp_d"; break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ default: UnimplementedInstruction();
+ }
+ AppendToBuffer("%s ", mnem);
+ int count = PrintRightOperand(modrm_start);
+ return count + 1;
+}
+
+int DisassemblerX87::RegisterFPUInstruction(int escape_opcode,
+ byte modrm_byte) {
+ bool has_register = false; // Is the FPU register encoded in modrm_byte?
+ const char* mnem = "?";
+
+ switch (escape_opcode) {
+ case 0xD8:
+ has_register = true;
+ switch (modrm_byte & 0xF8) {
+ case 0xC0: mnem = "fadd_i"; break;
+ case 0xE0: mnem = "fsub_i"; break;
+ case 0xC8: mnem = "fmul_i"; break;
+ case 0xF0: mnem = "fdiv_i"; break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xD9:
+ switch (modrm_byte & 0xF8) {
+ case 0xC0:
+ mnem = "fld";
+ has_register = true;
+ break;
+ case 0xC8:
+ mnem = "fxch";
+ has_register = true;
+ break;
+ default:
+ switch (modrm_byte) {
+ case 0xE0: mnem = "fchs"; break;
+ case 0xE1: mnem = "fabs"; break;
+ case 0xE4: mnem = "ftst"; break;
+ case 0xE8: mnem = "fld1"; break;
+ case 0xEB: mnem = "fldpi"; break;
+ case 0xED: mnem = "fldln2"; break;
+ case 0xEE: mnem = "fldz"; break;
+ case 0xF0: mnem = "f2xm1"; break;
+ case 0xF1: mnem = "fyl2x"; break;
+ case 0xF4: mnem = "fxtract"; break;
+ case 0xF5: mnem = "fprem1"; break;
+ case 0xF7: mnem = "fincstp"; break;
+ case 0xF8: mnem = "fprem"; break;
+ case 0xFC: mnem = "frndint"; break;
+ case 0xFD: mnem = "fscale"; break;
+ case 0xFE: mnem = "fsin"; break;
+ case 0xFF: mnem = "fcos"; break;
+ default: UnimplementedInstruction();
+ }
+ }
+ break;
+
+ case 0xDA:
+ if (modrm_byte == 0xE9) {
+ mnem = "fucompp";
+ } else {
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDB:
+ if ((modrm_byte & 0xF8) == 0xE8) {
+ mnem = "fucomi";
+ has_register = true;
+ } else if (modrm_byte == 0xE2) {
+ mnem = "fclex";
+ } else if (modrm_byte == 0xE3) {
+ mnem = "fninit";
+ } else {
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDC:
+ has_register = true;
+ switch (modrm_byte & 0xF8) {
+ case 0xC0: mnem = "fadd"; break;
+ case 0xE8: mnem = "fsub"; break;
+ case 0xC8: mnem = "fmul"; break;
+ case 0xF8: mnem = "fdiv"; break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDD:
+ has_register = true;
+ switch (modrm_byte & 0xF8) {
+ case 0xC0: mnem = "ffree"; break;
+ case 0xD0: mnem = "fst"; break;
+ case 0xD8: mnem = "fstp"; break;
+ default: UnimplementedInstruction();
+ }
+ break;
+
+ case 0xDE:
+ if (modrm_byte == 0xD9) {
+ mnem = "fcompp";
+ } else {
+ has_register = true;
+ switch (modrm_byte & 0xF8) {
+ case 0xC0: mnem = "faddp"; break;
+ case 0xE8: mnem = "fsubp"; break;
+ case 0xC8: mnem = "fmulp"; break;
+ case 0xF8: mnem = "fdivp"; break;
+ default: UnimplementedInstruction();
+ }
+ }
+ break;
+
+ case 0xDF:
+ if (modrm_byte == 0xE0) {
+ mnem = "fnstsw_ax";
+ } else if ((modrm_byte & 0xF8) == 0xE8) {
+ mnem = "fucomip";
+ has_register = true;
+ }
+ break;
+
+ default: UnimplementedInstruction();
+ }
+
+ if (has_register) {
+ AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
+ } else {
+ AppendToBuffer("%s", mnem);
+ }
+ return 2;
+}
+
+
+// Mnemonics for instructions 0xF0 byte.
+// Returns NULL if the instruction is not handled here.
+static const char* F0Mnem(byte f0byte) {
+ switch (f0byte) {
+ case 0x0B:
+ return "ud2";
+ case 0x18:
+ return "prefetch";
+ case 0xA2:
+ return "cpuid";
+ case 0xBE:
+ return "movsx_b";
+ case 0xBF:
+ return "movsx_w";
+ case 0xB6:
+ return "movzx_b";
+ case 0xB7:
+ return "movzx_w";
+ case 0xAF:
+ return "imul";
+ case 0xA4:
+ return "shld";
+ case 0xA5:
+ return "shld";
+ case 0xAD:
+ return "shrd";
+ case 0xAC:
+ return "shrd"; // 3-operand version.
+ case 0xAB:
+ return "bts";
+ case 0xB0:
+ return "cmpxchg_b";
+ case 0xB1:
+ return "cmpxchg";
+ case 0xBC:
+ return "bsf";
+ case 0xBD:
+ return "bsr";
+ default: return NULL;
+ }
+}
+
+
+// Disassembled instruction '*instr' and writes it into 'out_buffer'.
+int DisassemblerX87::InstructionDecode(v8::internal::Vector<char> out_buffer,
+ byte* instr) {
+ tmp_buffer_pos_ = 0; // starting to write as position 0
+ byte* data = instr;
+ // Check for hints.
+ const char* branch_hint = NULL;
+ // We use these two prefixes only with branch prediction
+ if (*data == 0x3E /*ds*/) {
+ branch_hint = "predicted taken";
+ data++;
+ } else if (*data == 0x2E /*cs*/) {
+ branch_hint = "predicted not taken";
+ data++;
+ } else if (*data == 0xF0 /*lock*/) {
+ AppendToBuffer("lock ");
+ data++;
+ }
+
+ bool processed = true; // Will be set to false if the current instruction
+ // is not in 'instructions' table.
+ const InstructionDesc& idesc = instruction_table_->Get(*data);
+ switch (idesc.type) {
+ case ZERO_OPERANDS_INSTR:
+ AppendToBuffer("%s", idesc.mnem);
+ data++;
+ break;
+
+ case TWO_OPERANDS_INSTR:
+ data++;
+ data += PrintOperands(idesc.mnem, idesc.op_order_, data);
+ break;
+
+ case JUMP_CONDITIONAL_SHORT_INSTR:
+ data += JumpConditionalShort(data, branch_hint);
+ break;
+
+ case REGISTER_INSTR:
+ AppendToBuffer("%s %s", idesc.mnem, NameOfCPURegister(*data & 0x07));
+ data++;
+ break;
+
+ case MOVE_REG_INSTR: {
+ byte* addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data+1));
+ AppendToBuffer("mov %s,%s",
+ NameOfCPURegister(*data & 0x07),
+ NameOfAddress(addr));
+ data += 5;
+ break;
+ }
+
+ case CALL_JUMP_INSTR: {
+ byte* addr = data + *reinterpret_cast<int32_t*>(data+1) + 5;
+ AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
+ data += 5;
+ break;
+ }
+
+ case SHORT_IMMEDIATE_INSTR: {
+ byte* addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data+1));
+ AppendToBuffer("%s eax,%s", idesc.mnem, NameOfAddress(addr));
+ data += 5;
+ break;
+ }
+
+ case BYTE_IMMEDIATE_INSTR: {
+ AppendToBuffer("%s al,0x%x", idesc.mnem, data[1]);
+ data += 2;
+ break;
+ }
+
+ case NO_INSTR:
+ processed = false;
+ break;
+
+ default:
+ UNIMPLEMENTED(); // This type is not implemented.
+ }
+ //----------------------------
+ if (!processed) {
+ switch (*data) {
+ case 0xC2:
+ AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data+1));
+ data += 3;
+ break;
+
+ case 0x6B: {
+ data++;
+ data += PrintOperands("imul", REG_OPER_OP_ORDER, data);
+ AppendToBuffer(",%d", *data);
+ data++;
+ } break;
+
+ case 0x69: {
+ data++;
+ data += PrintOperands("imul", REG_OPER_OP_ORDER, data);
+ AppendToBuffer(",%d", *reinterpret_cast<int32_t*>(data));
+ data += 4;
+ }
+ break;
+
+ case 0xF6:
+ { data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (regop == eax) {
+ AppendToBuffer("test_b ");
+ data += PrintRightByteOperand(data);
+ int32_t imm = *data;
+ AppendToBuffer(",0x%x", imm);
+ data++;
+ } else {
+ UnimplementedInstruction();
+ }
+ }
+ break;
+
+ case 0x81: // fall through
+ case 0x83: // 0x81 with sign extension bit set
+ data += PrintImmediateOp(data);
+ break;
+
+ case 0x0F:
+ { byte f0byte = data[1];
+ const char* f0mnem = F0Mnem(f0byte);
+ if (f0byte == 0x18) {
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ const char* suffix[] = {"nta", "1", "2", "3"};
+ AppendToBuffer("%s%s ", f0mnem, suffix[regop & 0x03]);
+ data += PrintRightOperand(data);
+ } else if (f0byte == 0x1F && data[2] == 0) {
+ AppendToBuffer("nop"); // 3 byte nop.
+ data += 3;
+ } else if (f0byte == 0x1F && data[2] == 0x40 && data[3] == 0) {
+ AppendToBuffer("nop"); // 4 byte nop.
+ data += 4;
+ } else if (f0byte == 0x1F && data[2] == 0x44 && data[3] == 0 &&
+ data[4] == 0) {
+ AppendToBuffer("nop"); // 5 byte nop.
+ data += 5;
+ } else if (f0byte == 0x1F && data[2] == 0x80 && data[3] == 0 &&
+ data[4] == 0 && data[5] == 0 && data[6] == 0) {
+ AppendToBuffer("nop"); // 7 byte nop.
+ data += 7;
+ } else if (f0byte == 0x1F && data[2] == 0x84 && data[3] == 0 &&
+ data[4] == 0 && data[5] == 0 && data[6] == 0 &&
+ data[7] == 0) {
+ AppendToBuffer("nop"); // 8 byte nop.
+ data += 8;
+ } else if (f0byte == 0x0B || f0byte == 0xA2 || f0byte == 0x31) {
+ AppendToBuffer("%s", f0mnem);
+ data += 2;
+ } else if (f0byte == 0x28) {
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movaps %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (f0byte >= 0x53 && f0byte <= 0x5F) {
+ const char* const pseudo_op[] = {
+ "rcpps",
+ "andps",
+ "andnps",
+ "orps",
+ "xorps",
+ "addps",
+ "mulps",
+ "cvtps2pd",
+ "cvtdq2ps",
+ "subps",
+ "minps",
+ "divps",
+ "maxps",
+ };
+
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("%s %s,",
+ pseudo_op[f0byte - 0x53],
+ NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (f0byte == 0x50) {
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movmskps %s,%s",
+ NameOfCPURegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (f0byte== 0xC6) {
+ // shufps xmm, xmm/m128, imm8
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("shufps %s,%s,%d",
+ NameOfXMMRegister(rm),
+ NameOfXMMRegister(regop),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if ((f0byte & 0xF0) == 0x80) {
+ data += JumpConditional(data, branch_hint);
+ } else if (f0byte == 0xBE || f0byte == 0xBF || f0byte == 0xB6 ||
+ f0byte == 0xB7 || f0byte == 0xAF) {
+ data += 2;
+ data += PrintOperands(f0mnem, REG_OPER_OP_ORDER, data);
+ } else if ((f0byte & 0xF0) == 0x90) {
+ data += SetCC(data);
+ } else if ((f0byte & 0xF0) == 0x40) {
+ data += CMov(data);
+ } else if (f0byte == 0xA4 || f0byte == 0xAC) {
+ // shld, shrd
+ data += 2;
+ AppendToBuffer("%s ", f0mnem);
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ data += 2;
+ AppendToBuffer("%s,%s,%d", NameOfCPURegister(rm),
+ NameOfCPURegister(regop), static_cast<int>(imm8));
+ } else if (f0byte == 0xAB || f0byte == 0xA5 || f0byte == 0xAD) {
+ // shrd_cl, shld_cl, bts
+ data += 2;
+ AppendToBuffer("%s ", f0mnem);
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightOperand(data);
+ if (f0byte == 0xAB) {
+ AppendToBuffer(",%s", NameOfCPURegister(regop));
+ } else {
+ AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
+ }
+ } else if (f0byte == 0xB0) {
+ // cmpxchg_b
+ data += 2;
+ AppendToBuffer("%s ", f0mnem);
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightOperand(data);
+ AppendToBuffer(",%s", NameOfByteCPURegister(regop));
+ } else if (f0byte == 0xB1) {
+ // cmpxchg
+ data += 2;
+ data += PrintOperands(f0mnem, OPER_REG_OP_ORDER, data);
+ } else if (f0byte == 0xBC) {
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("%s %s,", f0mnem, NameOfCPURegister(regop));
+ data += PrintRightOperand(data);
+ } else if (f0byte == 0xBD) {
+ data += 2;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("%s %s,", f0mnem, NameOfCPURegister(regop));
+ data += PrintRightOperand(data);
+ } else {
+ UnimplementedInstruction();
+ }
+ }
+ break;
+
+ case 0x8F:
+ { data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (regop == eax) {
+ AppendToBuffer("pop ");
+ data += PrintRightOperand(data);
+ }
+ }
+ break;
+
+ case 0xFF:
+ { data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ const char* mnem = NULL;
+ switch (regop) {
+ case esi: mnem = "push"; break;
+ case eax: mnem = "inc"; break;
+ case ecx: mnem = "dec"; break;
+ case edx: mnem = "call"; break;
+ case esp: mnem = "jmp"; break;
+ default: mnem = "???";
+ }
+ AppendToBuffer("%s ", mnem);
+ data += PrintRightOperand(data);
+ }
+ break;
+
+ case 0xC7: // imm32, fall through
+ case 0xC6: // imm8
+ { bool is_byte = *data == 0xC6;
+ data++;
+ if (is_byte) {
+ AppendToBuffer("%s ", "mov_b");
+ data += PrintRightByteOperand(data);
+ int32_t imm = *data;
+ AppendToBuffer(",0x%x", imm);
+ data++;
+ } else {
+ AppendToBuffer("%s ", "mov");
+ data += PrintRightOperand(data);
+ int32_t imm = *reinterpret_cast<int32_t*>(data);
+ AppendToBuffer(",0x%x", imm);
+ data += 4;
+ }
+ }
+ break;
+
+ case 0x80:
+ { data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ const char* mnem = NULL;
+ switch (regop) {
+ case 5: mnem = "subb"; break;
+ case 7: mnem = "cmpb"; break;
+ default: UnimplementedInstruction();
+ }
+ AppendToBuffer("%s ", mnem);
+ data += PrintRightByteOperand(data);
+ int32_t imm = *data;
+ AppendToBuffer(",0x%x", imm);
+ data++;
+ }
+ break;
+
+ case 0x88: // 8bit, fall through
+ case 0x89: // 32bit
+ { bool is_byte = *data == 0x88;
+ int mod, regop, rm;
+ data++;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (is_byte) {
+ AppendToBuffer("%s ", "mov_b");
+ data += PrintRightByteOperand(data);
+ AppendToBuffer(",%s", NameOfByteCPURegister(regop));
+ } else {
+ AppendToBuffer("%s ", "mov");
+ data += PrintRightOperand(data);
+ AppendToBuffer(",%s", NameOfCPURegister(regop));
+ }
+ }
+ break;
+
+ case 0x66: // prefix
+ while (*data == 0x66) data++;
+ if (*data == 0xf && data[1] == 0x1f) {
+ AppendToBuffer("nop"); // 0x66 prefix
+ } else if (*data == 0x39) {
+ data++;
+ data += PrintOperands("cmpw", OPER_REG_OP_ORDER, data);
+ } else if (*data == 0x3B) {
+ data++;
+ data += PrintOperands("cmpw", REG_OPER_OP_ORDER, data);
+ } else if (*data == 0x81) {
+ data++;
+ AppendToBuffer("cmpw ");
+ data += PrintRightOperand(data);
+ int imm = *reinterpret_cast<int16_t*>(data);
+ AppendToBuffer(",0x%x", imm);
+ data += 2;
+ } else if (*data == 0x87) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("xchg_w %s,", NameOfCPURegister(regop));
+ data += PrintRightOperand(data);
+ } else if (*data == 0x89) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("mov_w ");
+ data += PrintRightOperand(data);
+ AppendToBuffer(",%s", NameOfCPURegister(regop));
+ } else if (*data == 0x8B) {
+ data++;
+ data += PrintOperands("mov_w", REG_OPER_OP_ORDER, data);
+ } else if (*data == 0x90) {
+ AppendToBuffer("nop"); // 0x66 prefix
+ } else if (*data == 0xC7) {
+ data++;
+ AppendToBuffer("%s ", "mov_w");
+ data += PrintRightOperand(data);
+ int imm = *reinterpret_cast<int16_t*>(data);
+ AppendToBuffer(",0x%x", imm);
+ data += 2;
+ } else if (*data == 0xF7) {
+ data++;
+ AppendToBuffer("%s ", "test_w");
+ data += PrintRightOperand(data);
+ int imm = *reinterpret_cast<int16_t*>(data);
+ AppendToBuffer(",0x%x", imm);
+ data += 2;
+ } else if (*data == 0x0F) {
+ data++;
+ if (*data == 0x38) {
+ data++;
+ if (*data == 0x17) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("ptest %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x2A) {
+ // movntdqa
+ UnimplementedInstruction();
+ } else {
+ UnimplementedInstruction();
+ }
+ } else if (*data == 0x3A) {
+ data++;
+ if (*data == 0x0B) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("roundsd %s,%s,%d",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if (*data == 0x16) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &rm, &regop);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("pextrd %s,%s,%d",
+ NameOfCPURegister(regop),
+ NameOfXMMRegister(rm),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if (*data == 0x17) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("extractps %s,%s,%d",
+ NameOfCPURegister(rm),
+ NameOfXMMRegister(regop),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if (*data == 0x22) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("pinsrd %s,%s,%d",
+ NameOfXMMRegister(regop),
+ NameOfCPURegister(rm),
+ static_cast<int>(imm8));
+ data += 2;
+ } else {
+ UnimplementedInstruction();
+ }
+ } else if (*data == 0x2E || *data == 0x2F) {
+ const char* mnem = (*data == 0x2E) ? "ucomisd" : "comisd";
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (mod == 0x3) {
+ AppendToBuffer("%s %s,%s", mnem,
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else {
+ AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop));
+ data += PrintRightOperand(data);
+ }
+ } else if (*data == 0x50) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movmskpd %s,%s",
+ NameOfCPURegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x54) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("andpd %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x56) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("orpd %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x57) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("xorpd %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x6E) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movd %s,", NameOfXMMRegister(regop));
+ data += PrintRightOperand(data);
+ } else if (*data == 0x6F) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movdqa %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (*data == 0x70) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ AppendToBuffer("pshufd %s,%s,%d",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if (*data == 0x76) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("pcmpeqd %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x90) {
+ data++;
+ AppendToBuffer("nop"); // 2 byte nop.
+ } else if (*data == 0xF3) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("psllq %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x73) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ int8_t imm8 = static_cast<int8_t>(data[1]);
+ DCHECK(regop == esi || regop == edx);
+ AppendToBuffer("%s %s,%d",
+ (regop == esi) ? "psllq" : "psrlq",
+ NameOfXMMRegister(rm),
+ static_cast<int>(imm8));
+ data += 2;
+ } else if (*data == 0xD3) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("psrlq %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0x7F) {
+ AppendToBuffer("movdqa ");
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightXMMOperand(data);
+ AppendToBuffer(",%s", NameOfXMMRegister(regop));
+ } else if (*data == 0x7E) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movd ");
+ data += PrintRightOperand(data);
+ AppendToBuffer(",%s", NameOfXMMRegister(regop));
+ } else if (*data == 0xDB) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("pand %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0xE7) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (mod == 3) {
+ // movntdq
+ UnimplementedInstruction();
+ } else {
+ UnimplementedInstruction();
+ }
+ } else if (*data == 0xEF) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("pxor %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0xEB) {
+ data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("por %s,%s",
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data++;
+ } else if (*data == 0xB1) {
+ data++;
+ data += PrintOperands("cmpxchg_w", OPER_REG_OP_ORDER, data);
+ } else {
+ UnimplementedInstruction();
+ }
+ } else {
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xFE:
+ { data++;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (regop == ecx) {
+ AppendToBuffer("dec_b ");
+ data += PrintRightOperand(data);
+ } else {
+ UnimplementedInstruction();
+ }
+ }
+ break;
+
+ case 0x68:
+ AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data+1));
+ data += 5;
+ break;
+
+ case 0x6A:
+ AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
+ data += 2;
+ break;
+
+ case 0xA8:
+ AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data+1));
+ data += 2;
+ break;
+
+ case 0xA9:
+ AppendToBuffer("test eax,0x%x", *reinterpret_cast<int32_t*>(data+1));
+ data += 5;
+ break;
+
+ case 0xD1: // fall through
+ case 0xD3: // fall through
+ case 0xC1:
+ data += D1D3C1Instruction(data);
+ break;
+
+ case 0xD8: // fall through
+ case 0xD9: // fall through
+ case 0xDA: // fall through
+ case 0xDB: // fall through
+ case 0xDC: // fall through
+ case 0xDD: // fall through
+ case 0xDE: // fall through
+ case 0xDF:
+ data += FPUInstruction(data);
+ break;
+
+ case 0xEB:
+ data += JumpShort(data);
+ break;
+
+ case 0xF2:
+ if (*(data+1) == 0x0F) {
+ byte b2 = *(data+2);
+ if (b2 == 0x11) {
+ AppendToBuffer("movsd ");
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightXMMOperand(data);
+ AppendToBuffer(",%s", NameOfXMMRegister(regop));
+ } else if (b2 == 0x10) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movsd %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0x5A) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("cvtsd2ss %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else {
+ const char* mnem = "?";
+ switch (b2) {
+ case 0x2A: mnem = "cvtsi2sd"; break;
+ case 0x2C: mnem = "cvttsd2si"; break;
+ case 0x2D: mnem = "cvtsd2si"; break;
+ case 0x51: mnem = "sqrtsd"; break;
+ case 0x58: mnem = "addsd"; break;
+ case 0x59: mnem = "mulsd"; break;
+ case 0x5C: mnem = "subsd"; break;
+ case 0x5E: mnem = "divsd"; break;
+ }
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ if (b2 == 0x2A) {
+ AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop));
+ data += PrintRightOperand(data);
+ } else if (b2 == 0x2C || b2 == 0x2D) {
+ AppendToBuffer("%s %s,", mnem, NameOfCPURegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0xC2) {
+ // Intel manual 2A, Table 3-18.
+ const char* const pseudo_op[] = {
+ "cmpeqsd",
+ "cmpltsd",
+ "cmplesd",
+ "cmpunordsd",
+ "cmpneqsd",
+ "cmpnltsd",
+ "cmpnlesd",
+ "cmpordsd"
+ };
+ AppendToBuffer("%s %s,%s",
+ pseudo_op[data[1]],
+ NameOfXMMRegister(regop),
+ NameOfXMMRegister(rm));
+ data += 2;
+ } else {
+ AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ }
+ }
+ } else {
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xF3:
+ if (*(data+1) == 0x0F) {
+ byte b2 = *(data+2);
+ if (b2 == 0x11) {
+ AppendToBuffer("movss ");
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightXMMOperand(data);
+ AppendToBuffer(",%s", NameOfXMMRegister(regop));
+ } else if (b2 == 0x10) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movss %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0x2C) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("cvttss2si %s,", NameOfCPURegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0x5A) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0x6F) {
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ AppendToBuffer("movdqu %s,", NameOfXMMRegister(regop));
+ data += PrintRightXMMOperand(data);
+ } else if (b2 == 0x7F) {
+ AppendToBuffer("movdqu ");
+ data += 3;
+ int mod, regop, rm;
+ get_modrm(*data, &mod, &regop, &rm);
+ data += PrintRightXMMOperand(data);
+ AppendToBuffer(",%s", NameOfXMMRegister(regop));
+ } else {
+ UnimplementedInstruction();
+ }
+ } else if (*(data+1) == 0xA5) {
+ data += 2;
+ AppendToBuffer("rep_movs");
+ } else if (*(data+1) == 0xAB) {
+ data += 2;
+ AppendToBuffer("rep_stos");
+ } else {
+ UnimplementedInstruction();
+ }
+ break;
+
+ case 0xF7:
+ data += F7Instruction(data);
+ break;
+
+ default:
+ UnimplementedInstruction();
+ }
+ }
+
+ if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
+ tmp_buffer_[tmp_buffer_pos_] = '\0';
+ }
+
+ int instr_len = data - instr;
+ if (instr_len == 0) {
+ printf("%02x", *data);
+ }
+ DCHECK(instr_len > 0); // Ensure progress.
+
+ int outp = 0;
+ // Instruction bytes.
+ for (byte* bp = instr; bp < data; bp++) {
+ outp += v8::internal::SNPrintF(out_buffer + outp, "%02x", *bp);
+ }
+ for (int i = 6 - instr_len; i >= 0; i--) {
+ outp += v8::internal::SNPrintF(out_buffer + outp, " ");
+ }
+
+ outp += v8::internal::SNPrintF(out_buffer + outp, " %s", tmp_buffer_.start());
+ return instr_len;
+} // NOLINT (function is too long)
+
+
+//------------------------------------------------------------------------------
+
+
+static const char* const cpu_regs[8] = {
+ "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"
+};
+
+
+static const char* const byte_cpu_regs[8] = {
+ "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh"
+};
+
+
+static const char* const xmm_regs[8] = {
+ "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7"
+};
+
+
+const char* NameConverter::NameOfAddress(byte* addr) const {
+ v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
+ return tmp_buffer_.start();
+}
+
+
+const char* NameConverter::NameOfConstant(byte* addr) const {
+ return NameOfAddress(addr);
+}
+
+
+const char* NameConverter::NameOfCPURegister(int reg) const {
+ if (0 <= reg && reg < 8) return cpu_regs[reg];
+ return "noreg";
+}
+
+
+const char* NameConverter::NameOfByteCPURegister(int reg) const {
+ if (0 <= reg && reg < 8) return byte_cpu_regs[reg];
+ return "noreg";
+}
+
+
+const char* NameConverter::NameOfXMMRegister(int reg) const {
+ if (0 <= reg && reg < 8) return xmm_regs[reg];
+ return "noxmmreg";
+}
+
+
+const char* NameConverter::NameInCode(byte* addr) const {
+ // X87 does not embed debug strings at the moment.
+ UNREACHABLE();
+}
+
+
+//------------------------------------------------------------------------------
+
+Disassembler::Disassembler(const NameConverter& converter)
+ : converter_(converter) {}
+
+
+Disassembler::~Disassembler() {}
+
+
+int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
+ byte* instruction) {
+ DisassemblerX87 d(converter_, false /*do not crash if unimplemented*/);
+ return d.InstructionDecode(buffer, instruction);
+}
+
+
+// The IA-32 assembler does not currently use constant pools.
+int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; }
+
+
+/*static*/ void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
+ NameConverter converter;
+ Disassembler d(converter);
+ for (byte* pc = begin; pc < end;) {
+ v8::internal::EmbeddedVector<char, 128> buffer;
+ buffer[0] = '\0';
+ byte* prev_pc = pc;
+ pc += d.InstructionDecode(buffer, pc);
+ fprintf(f, "%p", static_cast<void*>(prev_pc));
+ fprintf(f, " ");
+
+ for (byte* bp = prev_pc; bp < pc; bp++) {
+ fprintf(f, "%02x", *bp);
+ }
+ for (int i = 6 - (pc - prev_pc); i >= 0; i--) {
+ fprintf(f, " ");
+ }
+ fprintf(f, " %s\n", buffer.start());
+ }
+}
+
+
+} // namespace disasm
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/frames-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/frames-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/frames-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/frames-x87.cc 2017-12-25 17:42:57.222465544 +0100
@@ -0,0 +1,27 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/assembler.h"
+#include "src/frames.h"
+#include "src/x87/assembler-x87-inl.h"
+#include "src/x87/assembler-x87.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+
+Register JavaScriptFrame::fp_register() { return ebp; }
+Register JavaScriptFrame::context_register() { return esi; }
+Register JavaScriptFrame::constant_pool_pointer_register() {
+ UNREACHABLE();
+}
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/frames-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/frames-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/frames-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/frames-x87.h 2017-12-25 17:42:57.222465544 +0100
@@ -0,0 +1,78 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_FRAMES_X87_H_
+#define V8_X87_FRAMES_X87_H_
+
+namespace v8 {
+namespace internal {
+
+
+// Register lists
+// Note that the bit values must match those used in actual instruction encoding
+const int kNumRegs = 8;
+
+
+// Caller-saved registers
+const RegList kJSCallerSaved =
+ 1 << 0 | // eax
+ 1 << 1 | // ecx
+ 1 << 2 | // edx
+ 1 << 3 | // ebx - used as a caller-saved register in JavaScript code
+ 1 << 7; // edi - callee function
+
+const int kNumJSCallerSaved = 5;
+
+
+// Number of registers for which space is reserved in safepoints.
+const int kNumSafepointRegisters = 8;
+
+// ----------------------------------------------------
+
+
+class EntryFrameConstants : public AllStatic {
+ public:
+ static const int kCallerFPOffset = -6 * kPointerSize;
+
+ static const int kNewTargetArgOffset = +2 * kPointerSize;
+ static const int kFunctionArgOffset = +3 * kPointerSize;
+ static const int kReceiverArgOffset = +4 * kPointerSize;
+ static const int kArgcOffset = +5 * kPointerSize;
+ static const int kArgvOffset = +6 * kPointerSize;
+};
+
+class ExitFrameConstants : public TypedFrameConstants {
+ public:
+ static const int kSPOffset = TYPED_FRAME_PUSHED_VALUE_OFFSET(0);
+ static const int kCodeOffset = TYPED_FRAME_PUSHED_VALUE_OFFSET(1);
+ DEFINE_TYPED_FRAME_SIZES(2);
+
+ static const int kCallerFPOffset = 0 * kPointerSize;
+ static const int kCallerPCOffset = +1 * kPointerSize;
+
+ // FP-relative displacement of the caller's SP. It points just
+ // below the saved PC.
+ static const int kCallerSPDisplacement = +2 * kPointerSize;
+
+ static const int kConstantPoolOffset = 0; // Not used
+};
+
+
+class JavaScriptFrameConstants : public AllStatic {
+ public:
+ // FP-relative.
+ static const int kLocal0Offset = StandardFrameConstants::kExpressionsOffset;
+ static const int kLastParameterOffset = +2 * kPointerSize;
+ static const int kFunctionOffset = StandardFrameConstants::kFunctionOffset;
+
+ // Caller SP-relative.
+ static const int kParam0Offset = -2 * kPointerSize;
+ static const int kReceiverOffset = -1 * kPointerSize;
+};
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_FRAMES_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/interface-descriptors-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/interface-descriptors-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/interface-descriptors-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/interface-descriptors-x87.cc 2017-12-25 17:42:57.223465529 +0100
@@ -0,0 +1,386 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/interface-descriptors.h"
+
+namespace v8 {
+namespace internal {
+
+const Register CallInterfaceDescriptor::ContextRegister() { return esi; }
+
+void CallInterfaceDescriptor::DefaultInitializePlatformSpecific(
+ CallInterfaceDescriptorData* data, int register_parameter_count) {
+ const Register default_stub_registers[] = {eax, ebx, ecx, edx, edi};
+ CHECK_LE(static_cast<size_t>(register_parameter_count),
+ arraysize(default_stub_registers));
+ data->InitializePlatformSpecific(register_parameter_count,
+ default_stub_registers);
+}
+
+const Register FastNewFunctionContextDescriptor::FunctionRegister() {
+ return edi;
+}
+const Register FastNewFunctionContextDescriptor::SlotsRegister() { return eax; }
+
+const Register LoadDescriptor::ReceiverRegister() { return edx; }
+const Register LoadDescriptor::NameRegister() { return ecx; }
+const Register LoadDescriptor::SlotRegister() { return eax; }
+
+const Register LoadWithVectorDescriptor::VectorRegister() { return ebx; }
+
+const Register LoadICProtoArrayDescriptor::HandlerRegister() { return edi; }
+
+const Register StoreDescriptor::ReceiverRegister() { return edx; }
+const Register StoreDescriptor::NameRegister() { return ecx; }
+const Register StoreDescriptor::ValueRegister() { return eax; }
+const Register StoreDescriptor::SlotRegister() { return edi; }
+
+const Register StoreWithVectorDescriptor::VectorRegister() { return ebx; }
+
+const Register StoreTransitionDescriptor::SlotRegister() { return no_reg; }
+const Register StoreTransitionDescriptor::VectorRegister() { return ebx; }
+const Register StoreTransitionDescriptor::MapRegister() { return edi; }
+
+const Register StringCompareDescriptor::LeftRegister() { return edx; }
+const Register StringCompareDescriptor::RightRegister() { return eax; }
+
+const Register StringConcatDescriptor::ArgumentsCountRegister() { return eax; }
+
+const Register ApiGetterDescriptor::HolderRegister() { return ecx; }
+const Register ApiGetterDescriptor::CallbackRegister() { return eax; }
+
+const Register MathPowTaggedDescriptor::exponent() { return eax; }
+
+const Register MathPowIntegerDescriptor::exponent() {
+ return MathPowTaggedDescriptor::exponent();
+}
+
+
+const Register GrowArrayElementsDescriptor::ObjectRegister() { return eax; }
+const Register GrowArrayElementsDescriptor::KeyRegister() { return ebx; }
+
+
+void FastNewClosureDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // SharedFunctionInfo, vector, slot index.
+ Register registers[] = {ebx, ecx, edx};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void FastNewRestParameterDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void FastNewSloppyArgumentsDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void FastNewStrictArgumentsDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+// static
+const Register TypeConversionDescriptor::ArgumentRegister() { return eax; }
+
+void TypeofDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void FastCloneRegExpDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi, eax, ecx, edx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void FastCloneShallowArrayDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {eax, ebx, ecx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void FastCloneShallowObjectDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {eax, ebx, ecx, edx};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void CreateAllocationSiteDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {ebx, edx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void CreateWeakCellDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {ebx, edx, edi};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void CallFunctionDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void CallICTrampolineDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi, eax, edx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void CallICDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edi, eax, edx, ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void CallConstructDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // eax : number of arguments
+ // ebx : feedback vector
+ // ecx : new target (for IsSuperConstructorCall)
+ // edx : slot in feedback vector (Smi, for RecordCallTarget)
+ // edi : constructor function
+ // TODO(turbofan): So far we don't gather type feedback and hence skip the
+ // slot parameter, but ArrayConstructStub needs the vector to be undefined.
+ Register registers[] = {eax, edi, ecx, ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void CallTrampolineDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // eax : number of arguments
+ // edi : the target to call
+ Register registers[] = {edi, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void CallForwardVarargsDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // ecx : start index (to support rest parameters)
+ // edi : the target to call
+ Register registers[] = {edi, ecx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void ConstructStubDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // eax : number of arguments
+ // edx : the new target
+ // edi : the target to call
+ // ebx : allocation site or undefined
+ Register registers[] = {edi, edx, eax, ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void ConstructTrampolineDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // eax : number of arguments
+ // edx : the new target
+ // edi : the target to call
+ Register registers[] = {edi, edx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+
+void TransitionElementsKindDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {eax, ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void AllocateHeapNumberDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // register state
+ data->InitializePlatformSpecific(0, nullptr, nullptr);
+}
+
+void ArrayNoArgumentConstructorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // register state
+ // eax -- number of arguments
+ // edi -- function
+ // ebx -- allocation site with elements kind
+ Register registers[] = {edi, ebx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void ArraySingleArgumentConstructorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // register state
+ // eax -- number of arguments
+ // edi -- function
+ // ebx -- allocation site with elements kind
+ Register registers[] = {edi, ebx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void ArrayNArgumentsConstructorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // register state
+ // eax -- number of arguments
+ // edi -- function
+ // ebx -- allocation site with elements kind
+ Register registers[] = {edi, ebx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void VarArgFunctionDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // stack param count needs (arg count)
+ Register registers[] = {eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void CompareDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void BinaryOpDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+
+void BinaryOpWithAllocationSiteDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {ecx, edx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void BinaryOpWithVectorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ // register state
+ // edx -- lhs
+ // eax -- rhs
+ // edi -- slot id
+ // ebx -- vector
+ Register registers[] = {edx, eax, edi, ebx};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void CountOpDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void StringAddDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {edx, eax};
+ data->InitializePlatformSpecific(arraysize(registers), registers, NULL);
+}
+
+void ArgumentAdaptorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ edi, // JSFunction
+ edx, // the new target
+ eax, // actual number of arguments
+ ebx, // expected number of arguments
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void ApiCallbackDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ edi, // callee
+ ebx, // call_data
+ ecx, // holder
+ edx, // api_function_address
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void InterpreterDispatchDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ kInterpreterAccumulatorRegister, kInterpreterBytecodeOffsetRegister,
+ kInterpreterBytecodeArrayRegister, kInterpreterDispatchTableRegister};
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void InterpreterPushArgsThenCallDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ eax, // argument count (not including receiver)
+ ebx, // address of first argument
+ edi // the target callable to be call
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void InterpreterPushArgsThenConstructDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ eax, // argument count (not including receiver)
+ edx, // new target
+ edi, // constructor
+ ebx, // allocation site feedback
+ ecx, // address of first argument
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void InterpreterPushArgsThenConstructArrayDescriptor::
+ InitializePlatformSpecific(CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ eax, // argument count (not including receiver)
+ edx, // target to the call. It is checked to be Array function.
+ ebx, // allocation site feedback
+ ecx, // address of first argument
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void InterpreterCEntryDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ eax, // argument count (argc)
+ ecx, // address of first argument (argv)
+ ebx // the runtime function to call
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+void ResumeGeneratorDescriptor::InitializePlatformSpecific(
+ CallInterfaceDescriptorData* data) {
+ Register registers[] = {
+ eax, // the value to pass to the generator
+ ebx, // the JSGeneratorObject to resume
+ edx // the resume mode (tagged)
+ };
+ data->InitializePlatformSpecific(arraysize(registers), registers);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.cc 2017-12-28 02:06:59.546987375 +0100
@@ -0,0 +1,2568 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/base/bits.h"
+#include "src/base/division-by-constant.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/debug/debug.h"
+#include "src/runtime/runtime.h"
+#include "src/x87/frames-x87.h"
+#include "src/x87/macro-assembler-x87.h"
+
+namespace v8 {
+namespace internal {
+
+// -------------------------------------------------------------------------
+// MacroAssembler implementation.
+
+MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size,
+ CodeObjectRequired create_code_object)
+ : TurboAssembler(isolate, buffer, size, create_code_object),
+ jit_cookie_(0) {
+ if (FLAG_mask_constants_with_cookie) {
+ jit_cookie_ = isolate->random_number_generator()->NextInt();
+ }
+}
+
+
+void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8()) {
+ movsx_b(dst, src);
+ } else if (r.IsUInteger8()) {
+ movzx_b(dst, src);
+ } else if (r.IsInteger16()) {
+ movsx_w(dst, src);
+ } else if (r.IsUInteger16()) {
+ movzx_w(dst, src);
+ } else {
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8() || r.IsUInteger8()) {
+ mov_b(dst, src);
+ } else if (r.IsInteger16() || r.IsUInteger16()) {
+ mov_w(dst, src);
+ } else {
+ if (r.IsHeapObject()) {
+ AssertNotSmi(src);
+ } else if (r.IsSmi()) {
+ AssertSmi(src);
+ }
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
+ if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
+ Handle<Object> object = isolate()->heap()->root_handle(index);
+ if (object->IsHeapObject()) {
+ mov(destination, Handle<HeapObject>::cast(object));
+ } else {
+ mov(destination, Immediate(Smi::cast(*object)));
+ }
+ return;
+ }
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(destination, Immediate(index));
+ mov(destination, Operand::StaticArray(destination,
+ times_pointer_size,
+ roots_array_start));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Register scratch,
+ Heap::RootListIndex index) {
+ DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(index));
+ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
+ source);
+}
+
+
+void MacroAssembler::CompareRoot(Register with,
+ Register scratch,
+ Heap::RootListIndex index) {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(index));
+ cmp(with, Operand::StaticArray(scratch,
+ times_pointer_size,
+ roots_array_start));
+}
+
+
+void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
+ DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+ Handle<Object> object = isolate()->heap()->root_handle(index);
+ if (object->IsHeapObject()) {
+ cmp(with, Handle<HeapObject>::cast(object));
+ } else {
+ cmp(with, Immediate(Smi::cast(*object)));
+ }
+}
+
+
+void MacroAssembler::CompareRoot(const Operand& with,
+ Heap::RootListIndex index) {
+ DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+ Handle<Object> object = isolate()->heap()->root_handle(index);
+ if (object->IsHeapObject()) {
+ cmp(with, Handle<HeapObject>::cast(object));
+ } else {
+ cmp(with, Immediate(Smi::cast(*object)));
+ }
+}
+
+
+void MacroAssembler::PushRoot(Heap::RootListIndex index) {
+ DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
+ PushObject(isolate()->heap()->root_handle(index));
+}
+
+#define REG(Name) \
+ { Register::kCode_##Name }
+
+static const Register saved_regs[] = {REG(eax), REG(ecx), REG(edx)};
+
+#undef REG
+
+static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
+
+void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
+ Register exclusion1, Register exclusion2,
+ Register exclusion3) {
+ // We don't allow a GC during a store buffer overflow so there is no need to
+ // store the registers in any particular way, but we do have to store and
+ // restore them.
+ for (int i = 0; i < kNumberOfSavedRegs; i++) {
+ Register reg = saved_regs[i];
+ if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
+ push(reg);
+ }
+ }
+ if (fp_mode == kSaveFPRegs) {
+ // Save FPU state in m108byte.
+ sub(esp, Immediate(108));
+ fnsave(Operand(esp, 0));
+ }
+}
+
+void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
+ Register exclusion2, Register exclusion3) {
+ if (fp_mode == kSaveFPRegs) {
+ // Restore FPU state in m108byte.
+ frstor(Operand(esp, 0));
+ add(esp, Immediate(108));
+ }
+
+ for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
+ Register reg = saved_regs[i];
+ if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
+ pop(reg);
+ }
+ }
+}
+
+void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc,
+ Label* condition_met,
+ Label::Distance distance) {
+ CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc,
+ condition_met, distance);
+}
+
+
+void MacroAssembler::RememberedSetHelper(
+ Register object, // Only used for debug checks.
+ Register addr, Register scratch, SaveFPRegsMode save_fp,
+ MacroAssembler::RememberedSetFinalAction and_then) {
+ Label done;
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+ // Load store buffer top.
+ ExternalReference store_buffer =
+ ExternalReference::store_buffer_top(isolate());
+ mov(scratch, Operand::StaticVariable(store_buffer));
+ // Store pointer to buffer.
+ mov(Operand(scratch, 0), addr);
+ // Increment buffer top.
+ add(scratch, Immediate(kPointerSize));
+ // Write back new top of buffer.
+ mov(Operand::StaticVariable(store_buffer), scratch);
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ test(scratch, Immediate(StoreBuffer::kStoreBufferMask));
+ if (and_then == kReturnAtEnd) {
+ Label buffer_overflowed;
+ j(equal, &buffer_overflowed, Label::kNear);
+ ret(0);
+ bind(&buffer_overflowed);
+ } else {
+ DCHECK(and_then == kFallThroughAtEnd);
+ j(not_equal, &done, Label::kNear);
+ }
+ StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
+ CallStub(&store_buffer_overflow);
+ if (and_then == kReturnAtEnd) {
+ ret(0);
+ } else {
+ DCHECK(and_then == kFallThroughAtEnd);
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::ClampTOSToUint8(Register result_reg) {
+ Label done, conv_failure;
+ sub(esp, Immediate(kPointerSize));
+ fnclex();
+ fist_s(Operand(esp, 0));
+ pop(result_reg);
+ X87CheckIA();
+ j(equal, &conv_failure, Label::kNear);
+ test(result_reg, Immediate(0xFFFFFF00));
+ j(zero, &done, Label::kNear);
+ setcc(sign, result_reg);
+ sub(result_reg, Immediate(1));
+ and_(result_reg, Immediate(255));
+ jmp(&done, Label::kNear);
+ bind(&conv_failure);
+ fnclex();
+ fldz();
+ fld(1);
+ FCmp();
+ setcc(below, result_reg); // 1 if negative, 0 if positive.
+ dec_b(result_reg); // 0 if negative, 255 if positive.
+ bind(&done);
+}
+
+
+void MacroAssembler::ClampUint8(Register reg) {
+ Label done;
+ test(reg, Immediate(0xFFFFFF00));
+ j(zero, &done, Label::kNear);
+ setcc(negative, reg); // 1 if negative, 0 if positive.
+ dec_b(reg); // 0 if negative, 255 if positive.
+ bind(&done);
+}
+
+
+void TurboAssembler::SlowTruncateToIDelayed(Zone* zone, Register result_reg,
+ Register input_reg, int offset) {
+ CallStubDelayed(
+ new (zone) DoubleToIStub(nullptr, input_reg, result_reg, offset, true));
+}
+
+void MacroAssembler::SlowTruncateToI(Register result_reg,
+ Register input_reg,
+ int offset) {
+ DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
+ sub(esp, Immediate(kDoubleSize));
+ fst_d(MemOperand(esp, 0));
+ SlowTruncateToI(result_reg, esp, 0);
+ add(esp, Immediate(kDoubleSize));
+}
+
+
+void MacroAssembler::X87TOSToI(Register result_reg,
+ MinusZeroMode minus_zero_mode,
+ Label* lost_precision, Label* is_nan,
+ Label* minus_zero, Label::Distance dst) {
+ Label done;
+ sub(esp, Immediate(kPointerSize));
+ fld(0);
+ fist_s(MemOperand(esp, 0));
+ fild_s(MemOperand(esp, 0));
+ pop(result_reg);
+ FCmp();
+ j(not_equal, lost_precision, dst);
+ j(parity_even, is_nan, dst);
+ if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
+ test(result_reg, Operand(result_reg));
+ j(not_zero, &done, Label::kNear);
+ // To check for minus zero, we load the value again as float, and check
+ // if that is still 0.
+ sub(esp, Immediate(kPointerSize));
+ fst_s(MemOperand(esp, 0));
+ pop(result_reg);
+ test(result_reg, Operand(result_reg));
+ j(not_zero, minus_zero, dst);
+ }
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
+ Register input_reg) {
+ Label done, slow_case;
+
+ SlowTruncateToI(result_reg, input_reg);
+ bind(&done);
+}
+
+
+void TurboAssembler::LoadUint32NoSSE2(const Operand& src) {
+ Label done;
+ push(src);
+ fild_s(Operand(esp, 0));
+ cmp(src, Immediate(0));
+ j(not_sign, &done, Label::kNear);
+ ExternalReference uint32_bias =
+ ExternalReference::address_of_uint32_bias();
+ fld_d(Operand::StaticVariable(uint32_bias));
+ faddp(1);
+ bind(&done);
+ add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::RecordWriteField(
+ Register object, int offset, Register value, Register dst,
+ SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action,
+ SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done, Label::kNear);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ DCHECK(IsAligned(offset, kPointerSize));
+
+ lea(dst, FieldOperand(object, offset));
+ if (emit_debug_code()) {
+ Label ok;
+ test_b(dst, Immediate(kPointerSize - 1));
+ j(zero, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ RecordWrite(object, dst, value, save_fp, remembered_set_action,
+ OMIT_SMI_CHECK, pointers_to_here_check_for_value);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+ mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::RecordWriteForMap(Register object, Handle<Map> map,
+ Register scratch1, Register scratch2,
+ SaveFPRegsMode save_fp) {
+ Label done;
+
+ Register address = scratch1;
+ Register value = scratch2;
+ if (emit_debug_code()) {
+ Label ok;
+ lea(address, FieldOperand(object, HeapObject::kMapOffset));
+ test_b(address, Immediate(kPointerSize - 1));
+ j(zero, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ DCHECK(!object.is(value));
+ DCHECK(!object.is(address));
+ DCHECK(!value.is(address));
+ AssertNotSmi(object);
+
+ if (!FLAG_incremental_marking) {
+ return;
+ }
+
+ // Compute the address.
+ lea(address, FieldOperand(object, HeapObject::kMapOffset));
+
+ // A single check of the map's pages interesting flag suffices, since it is
+ // only set during incremental collection, and then it's also guaranteed that
+ // the from object's page's interesting flag is also set. This optimization
+ // relies on the fact that maps can never be in new space.
+ DCHECK(!isolate()->heap()->InNewSpace(*map));
+ CheckPageFlagForMap(map,
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+
+ RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
+ save_fp);
+ CallStub(&stub);
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+ mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
+ mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
+ }
+}
+
+
+void MacroAssembler::RecordWrite(
+ Register object, Register address, Register value, SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action, SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ DCHECK(!object.is(value));
+ DCHECK(!object.is(address));
+ DCHECK(!value.is(address));
+ AssertNotSmi(object);
+
+ if (remembered_set_action == OMIT_REMEMBERED_SET &&
+ !FLAG_incremental_marking) {
+ return;
+ }
+
+ if (emit_debug_code()) {
+ Label ok;
+ cmp(value, Operand(address, 0));
+ j(equal, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis and stores into young gen.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ // Skip barrier if writing a smi.
+ JumpIfSmi(value, &done, Label::kNear);
+ }
+
+ if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+ }
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ zero,
+ &done,
+ Label::kNear);
+
+ RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
+ fp_mode);
+ CallStub(&stub);
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
+ mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
+ }
+}
+
+void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
+ Register code_entry,
+ Register scratch) {
+ const int offset = JSFunction::kCodeEntryOffset;
+
+ // Since a code entry (value) is always in old space, we don't need to update
+ // remembered set. If incremental marking is off, there is nothing for us to
+ // do.
+ if (!FLAG_incremental_marking) return;
+
+ DCHECK(!js_function.is(code_entry));
+ DCHECK(!js_function.is(scratch));
+ DCHECK(!code_entry.is(scratch));
+ AssertNotSmi(js_function);
+
+ if (emit_debug_code()) {
+ Label ok;
+ lea(scratch, FieldOperand(js_function, offset));
+ cmp(code_entry, Operand(scratch, 0));
+ j(equal, &ok, Label::kNear);
+ int3();
+ bind(&ok);
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis and stores into young gen.
+ Label done;
+
+ CheckPageFlag(code_entry, scratch,
+ MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
+ Label::kNear);
+ CheckPageFlag(js_function, scratch,
+ MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
+ Label::kNear);
+
+ // Save input registers.
+ push(js_function);
+ push(code_entry);
+
+ const Register dst = scratch;
+ lea(dst, FieldOperand(js_function, offset));
+
+ // Save caller-saved registers.
+ PushCallerSaved(kDontSaveFPRegs, js_function, code_entry);
+
+ int argument_count = 3;
+ PrepareCallCFunction(argument_count, code_entry);
+ mov(Operand(esp, 0 * kPointerSize), js_function);
+ mov(Operand(esp, 1 * kPointerSize), dst); // Slot.
+ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(this);
+ CallCFunction(
+ ExternalReference::incremental_marking_record_write_code_entry_function(
+ isolate()),
+ argument_count);
+ }
+
+ // Restore caller-saved registers.
+ PopCallerSaved(kDontSaveFPRegs, js_function, code_entry);
+
+ // Restore input registers.
+ pop(code_entry);
+ pop(js_function);
+
+ bind(&done);
+}
+
+void MacroAssembler::DebugBreak() {
+ Move(eax, Immediate(0));
+ mov(ebx, Immediate(ExternalReference(Runtime::kHandleDebuggerStatement,
+ isolate())));
+ CEntryStub ces(isolate(), 1);
+ call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
+}
+
+void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) {
+ if (shift >= 32) {
+ mov(high, low);
+ shl(high, shift - 32);
+ xor_(low, low);
+ } else {
+ shld(high, low, shift);
+ shl(low, shift);
+ }
+}
+
+void TurboAssembler::ShlPair_cl(Register high, Register low) {
+ shld_cl(high, low);
+ shl_cl(low);
+ Label done;
+ test(ecx, Immediate(0x20));
+ j(equal, &done, Label::kNear);
+ mov(high, low);
+ xor_(low, low);
+ bind(&done);
+}
+
+void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) {
+ if (shift >= 32) {
+ mov(low, high);
+ shr(low, shift - 32);
+ xor_(high, high);
+ } else {
+ shrd(high, low, shift);
+ shr(high, shift);
+ }
+}
+
+void TurboAssembler::ShrPair_cl(Register high, Register low) {
+ shrd_cl(low, high);
+ shr_cl(high);
+ Label done;
+ test(ecx, Immediate(0x20));
+ j(equal, &done, Label::kNear);
+ mov(low, high);
+ xor_(high, high);
+ bind(&done);
+}
+
+void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) {
+ if (shift >= 32) {
+ mov(low, high);
+ sar(low, shift - 32);
+ sar(high, 31);
+ } else {
+ shrd(high, low, shift);
+ sar(high, shift);
+ }
+}
+
+void TurboAssembler::SarPair_cl(Register high, Register low) {
+ shrd_cl(low, high);
+ sar_cl(high);
+ Label done;
+ test(ecx, Immediate(0x20));
+ j(equal, &done, Label::kNear);
+ mov(low, high);
+ sar(high, 31);
+ bind(&done);
+}
+
+bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
+ static const int kMaxImmediateBits = 17;
+ if (!RelocInfo::IsNone(x.rmode_)) return false;
+ return !is_intn(x.immediate(), kMaxImmediateBits);
+}
+
+
+void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
+ if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+ Move(dst, Immediate(x.immediate() ^ jit_cookie()));
+ xor_(dst, jit_cookie());
+ } else {
+ Move(dst, x);
+ }
+}
+
+
+void MacroAssembler::SafePush(const Immediate& x) {
+ if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
+ push(Immediate(x.immediate() ^ jit_cookie()));
+ xor_(Operand(esp, 0), Immediate(jit_cookie()));
+ } else {
+ push(x);
+ }
+}
+
+
+void MacroAssembler::CmpObjectType(Register heap_object,
+ InstanceType type,
+ Register map) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ CmpInstanceType(map, type);
+}
+
+
+void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
+ cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type));
+}
+
+void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
+ cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+
+ CompareMap(obj, map);
+ j(not_equal, fail);
+}
+
+
+Condition MacroAssembler::IsObjectStringType(Register heap_object,
+ Register map,
+ Register instance_type) {
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
+ movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kNotStringTag != 0);
+ test(instance_type, Immediate(kIsNotStringMask));
+ return zero;
+}
+
+
+void MacroAssembler::FCmp() {
+ fucompp();
+ push(eax);
+ fnstsw_ax();
+ sahf();
+ pop(eax);
+}
+
+
+void MacroAssembler::FXamMinusZero() {
+ fxam();
+ push(eax);
+ fnstsw_ax();
+ and_(eax, Immediate(0x4700));
+ // For minus zero, C3 == 1 && C1 == 1.
+ cmp(eax, Immediate(0x4200));
+ pop(eax);
+ fstp(0);
+}
+
+
+void MacroAssembler::FXamSign() {
+ fxam();
+ push(eax);
+ fnstsw_ax();
+ // For negative value (including -0.0), C1 == 1.
+ and_(eax, Immediate(0x0200));
+ pop(eax);
+ fstp(0);
+}
+
+
+void MacroAssembler::X87CheckIA() {
+ push(eax);
+ fnstsw_ax();
+ // For #IA, IE == 1 && SF == 0.
+ and_(eax, Immediate(0x0041));
+ cmp(eax, Immediate(0x0001));
+ pop(eax);
+}
+
+
+// rc=00B, round to nearest.
+// rc=01B, round down.
+// rc=10B, round up.
+// rc=11B, round toward zero.
+void MacroAssembler::X87SetRC(int rc) {
+ sub(esp, Immediate(kPointerSize));
+ fnstcw(MemOperand(esp, 0));
+ and_(MemOperand(esp, 0), Immediate(0xF3FF));
+ or_(MemOperand(esp, 0), Immediate(rc));
+ fldcw(MemOperand(esp, 0));
+ add(esp, Immediate(kPointerSize));
+}
+
+
+void MacroAssembler::X87SetFPUCW(int cw) {
+ RecordComment("-- X87SetFPUCW start --");
+ push(Immediate(cw));
+ fldcw(MemOperand(esp, 0));
+ add(esp, Immediate(kPointerSize));
+ RecordComment("-- X87SetFPUCW end--");
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(equal, kOperandIsNotASmi);
+ }
+}
+
+
+void MacroAssembler::AssertFunction(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmiAndNotAFunction);
+ Push(object);
+ CmpObjectType(object, JS_FUNCTION_TYPE, object);
+ Pop(object);
+ Check(equal, kOperandIsNotAFunction);
+ }
+}
+
+
+void MacroAssembler::AssertBoundFunction(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmiAndNotABoundFunction);
+ Push(object);
+ CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
+ Pop(object);
+ Check(equal, kOperandIsNotABoundFunction);
+ }
+}
+
+void MacroAssembler::AssertGeneratorObject(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmiAndNotAGeneratorObject);
+ Push(object);
+ CmpObjectType(object, JS_GENERATOR_OBJECT_TYPE, object);
+ Pop(object);
+ Check(equal, kOperandIsNotAGeneratorObject);
+ }
+}
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
+ if (emit_debug_code()) {
+ Label done_checking;
+ AssertNotSmi(object);
+ cmp(object, isolate()->factory()->undefined_value());
+ j(equal, &done_checking);
+ cmp(FieldOperand(object, 0),
+ Immediate(isolate()->factory()->allocation_site_map()));
+ Assert(equal, kExpectedUndefinedOrCell);
+ bind(&done_checking);
+ }
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+ if (emit_debug_code()) {
+ test(object, Immediate(kSmiTagMask));
+ Check(not_equal, kOperandIsASmi);
+ }
+}
+
+void TurboAssembler::StubPrologue(StackFrame::Type type) {
+ push(ebp); // Caller's frame pointer.
+ mov(ebp, esp);
+ push(Immediate(Smi::FromInt(type)));
+}
+
+
+void TurboAssembler::Prologue(bool code_pre_aging) {
+ PredictableCodeSizeScope predictible_code_size_scope(this,
+ kNoCodeAgeSequenceLength);
+ if (code_pre_aging) {
+ // Pre-age the code.
+ call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
+ RelocInfo::CODE_AGE_SEQUENCE);
+ Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
+ } else {
+ push(ebp); // Caller's frame pointer.
+ mov(ebp, esp);
+ push(esi); // Callee's context.
+ push(edi); // Callee's JS function.
+ }
+}
+
+void MacroAssembler::EmitLoadFeedbackVector(Register vector) {
+ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ mov(vector, FieldOperand(vector, JSFunction::kFeedbackVectorOffset));
+ mov(vector, FieldOperand(vector, Cell::kValueOffset));
+}
+
+
+void TurboAssembler::EnterFrame(StackFrame::Type type) {
+ push(ebp);
+ mov(ebp, esp);
+ push(Immediate(Smi::FromInt(type)));
+ if (type == StackFrame::INTERNAL) {
+ push(Immediate(CodeObject()));
+ }
+ if (emit_debug_code()) {
+ cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
+ Check(not_equal, kCodeObjectNotProperlyPatched);
+ }
+}
+
+
+void TurboAssembler::LeaveFrame(StackFrame::Type type) {
+ if (emit_debug_code()) {
+ cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset),
+ Immediate(Smi::FromInt(type)));
+ Check(equal, kStackFrameTypesMustMatch);
+ }
+ leave();
+}
+
+void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
+ Register argc) {
+ Push(ebp);
+ Move(ebp, esp);
+ Push(context);
+ Push(target);
+ Push(argc);
+}
+
+void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
+ Register argc) {
+ Pop(argc);
+ Pop(target);
+ Pop(context);
+ leave();
+}
+
+void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type) {
+ DCHECK(frame_type == StackFrame::EXIT ||
+ frame_type == StackFrame::BUILTIN_EXIT);
+
+ // Set up the frame structure on the stack.
+ DCHECK_EQ(+2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
+ DCHECK_EQ(+1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
+ DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
+ push(ebp);
+ mov(ebp, esp);
+
+ // Reserve room for entry stack pointer and push the code object.
+ push(Immediate(Smi::FromInt(frame_type)));
+ DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset);
+ push(Immediate(0)); // Saved entry sp, patched before call.
+ DCHECK_EQ(-3 * kPointerSize, ExitFrameConstants::kCodeOffset);
+ push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
+
+ // Save the frame pointer and the context in top.
+ ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress,
+ isolate());
+ ExternalReference context_address(IsolateAddressId::kContextAddress,
+ isolate());
+ ExternalReference c_function_address(IsolateAddressId::kCFunctionAddress,
+ isolate());
+ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
+ mov(Operand::StaticVariable(context_address), esi);
+ mov(Operand::StaticVariable(c_function_address), ebx);
+}
+
+
+void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
+ // Optionally save FPU state.
+ if (save_doubles) {
+ // Store FPU state to m108byte.
+ int space = 108 + argc * kPointerSize;
+ sub(esp, Immediate(space));
+ const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
+ fnsave(MemOperand(ebp, offset - 108));
+ } else {
+ sub(esp, Immediate(argc * kPointerSize));
+ }
+
+ // Get the required frame alignment for the OS.
+ const int kFrameAlignment = base::OS::ActivationFrameAlignment();
+ if (kFrameAlignment > 0) {
+ DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment));
+ and_(esp, -kFrameAlignment);
+ }
+
+ // Patch the saved entry sp.
+ mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
+}
+
+void MacroAssembler::EnterExitFrame(int argc, bool save_doubles,
+ StackFrame::Type frame_type) {
+ EnterExitFramePrologue(frame_type);
+
+ // Set up argc and argv in callee-saved registers.
+ int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
+ mov(edi, eax);
+ lea(esi, Operand(ebp, eax, times_4, offset));
+
+ // Reserve space for argc, argv and isolate.
+ EnterExitFrameEpilogue(argc, save_doubles);
+}
+
+
+void MacroAssembler::EnterApiExitFrame(int argc) {
+ EnterExitFramePrologue(StackFrame::EXIT);
+ EnterExitFrameEpilogue(argc, false);
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) {
+ // Optionally restore FPU state.
+ if (save_doubles) {
+ const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
+ frstor(MemOperand(ebp, offset - 108));
+ }
+
+ if (pop_arguments) {
+ // Get the return address from the stack and restore the frame pointer.
+ mov(ecx, Operand(ebp, 1 * kPointerSize));
+ mov(ebp, Operand(ebp, 0 * kPointerSize));
+
+ // Pop the arguments and the receiver from the caller stack.
+ lea(esp, Operand(esi, 1 * kPointerSize));
+
+ // Push the return address to get ready to return.
+ push(ecx);
+ } else {
+ // Otherwise just leave the exit frame.
+ leave();
+ }
+
+ LeaveExitFrameEpilogue(true);
+}
+
+
+void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
+ // Restore current context from top and clear it in debug mode.
+ ExternalReference context_address(IsolateAddressId::kContextAddress,
+ isolate());
+ if (restore_context) {
+ mov(esi, Operand::StaticVariable(context_address));
+ }
+#ifdef DEBUG
+ mov(Operand::StaticVariable(context_address), Immediate(0));
+#endif
+
+ // Clear the top frame.
+ ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress,
+ isolate());
+ mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
+}
+
+
+void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
+ mov(esp, ebp);
+ pop(ebp);
+
+ LeaveExitFrameEpilogue(restore_context);
+}
+
+
+void MacroAssembler::PushStackHandler() {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+
+ // Link the current handler as the next handler.
+ ExternalReference handler_address(IsolateAddressId::kHandlerAddress,
+ isolate());
+ push(Operand::StaticVariable(handler_address));
+
+ // Set this new handler as the current one.
+ mov(Operand::StaticVariable(handler_address), esp);
+}
+
+
+void MacroAssembler::PopStackHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ ExternalReference handler_address(IsolateAddressId::kHandlerAddress,
+ isolate());
+ pop(Operand::StaticVariable(handler_address));
+ add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
+}
+
+
+// Compute the hash code from the untagged key. This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
+// code-stub-hydrogen.cc
+//
+// Note: r0 will contain hash code
+void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
+ // Xor original key with a seed.
+ if (serializer_enabled()) {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ mov(scratch, Immediate(Heap::kHashSeedRootIndex));
+ mov(scratch,
+ Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
+ SmiUntag(scratch);
+ xor_(r0, scratch);
+ } else {
+ int32_t seed = isolate()->heap()->HashSeed();
+ xor_(r0, Immediate(seed));
+ }
+
+ // hash = ~hash + (hash << 15);
+ mov(scratch, r0);
+ not_(r0);
+ shl(scratch, 15);
+ add(r0, scratch);
+ // hash = hash ^ (hash >> 12);
+ mov(scratch, r0);
+ shr(scratch, 12);
+ xor_(r0, scratch);
+ // hash = hash + (hash << 2);
+ lea(r0, Operand(r0, r0, times_4, 0));
+ // hash = hash ^ (hash >> 4);
+ mov(scratch, r0);
+ shr(scratch, 4);
+ xor_(r0, scratch);
+ // hash = hash * 2057;
+ imul(r0, r0, 2057);
+ // hash = hash ^ (hash >> 16);
+ mov(scratch, r0);
+ shr(scratch, 16);
+ xor_(r0, scratch);
+ and_(r0, 0x3fffffff);
+}
+
+void MacroAssembler::LoadAllocationTopHelper(Register result,
+ Register scratch,
+ AllocationFlags flags) {
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+ // Just return if allocation top is already known.
+ if ((flags & RESULT_CONTAINS_TOP) != 0) {
+ // No use of scratch if allocation top is provided.
+ DCHECK(scratch.is(no_reg));
+#ifdef DEBUG
+ // Assert that result actually contains top on entry.
+ cmp(result, Operand::StaticVariable(allocation_top));
+ Check(equal, kUnexpectedAllocationTop);
+#endif
+ return;
+ }
+
+ // Move address of new object to result. Use scratch register if available.
+ if (scratch.is(no_reg)) {
+ mov(result, Operand::StaticVariable(allocation_top));
+ } else {
+ mov(scratch, Immediate(allocation_top));
+ mov(result, Operand(scratch, 0));
+ }
+}
+
+
+void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
+ Register scratch,
+ AllocationFlags flags) {
+ if (emit_debug_code()) {
+ test(result_end, Immediate(kObjectAlignmentMask));
+ Check(zero, kUnalignedAllocationInNewSpace);
+ }
+
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+
+ // Update new top. Use scratch if available.
+ if (scratch.is(no_reg)) {
+ mov(Operand::StaticVariable(allocation_top), result_end);
+ } else {
+ mov(Operand(scratch, 0), result_end);
+ }
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+ DCHECK(object_size <= kMaxRegularHeapObjectSize);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ if (result_end.is_valid()) {
+ mov(result_end, Immediate(0x7191));
+ }
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ }
+ jmp(gc_required);
+ return;
+ }
+ DCHECK(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ Register top_reg = result_end.is_valid() ? result_end : result;
+
+ if (!top_reg.is(result)) {
+ mov(top_reg, result);
+ }
+ add(top_reg, Immediate(object_size));
+ cmp(top_reg, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ UpdateAllocationTopHelper(top_reg, scratch, flags);
+
+ if (top_reg.is(result)) {
+ sub(result, Immediate(object_size - kHeapObjectTag));
+ } else {
+ // Tag the result.
+ DCHECK(kHeapObjectTag == 1);
+ inc(result);
+ }
+}
+
+
+void MacroAssembler::Allocate(int header_size,
+ ScaleFactor element_size,
+ Register element_count,
+ RegisterValueType element_count_type,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ DCHECK((flags & SIZE_IN_WORDS) == 0);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ mov(result_end, Immediate(0x7191));
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ // Register element_count is not modified by the function.
+ }
+ jmp(gc_required);
+ return;
+ }
+ DCHECK(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ // We assume that element_count*element_size + header_size does not
+ // overflow.
+ if (element_count_type == REGISTER_VALUE_IS_SMI) {
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
+ STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
+ DCHECK(element_size >= times_2);
+ DCHECK(kSmiTagSize == 1);
+ element_size = static_cast<ScaleFactor>(element_size - 1);
+ } else {
+ DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
+ }
+ lea(result_end, Operand(element_count, element_size, header_size));
+ add(result_end, result);
+ j(carry, gc_required);
+ cmp(result_end, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ // Tag result.
+ DCHECK(kHeapObjectTag == 1);
+ inc(result);
+
+ // Update allocation top.
+ UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+void MacroAssembler::Allocate(Register object_size,
+ Register result,
+ Register result_end,
+ Register scratch,
+ Label* gc_required,
+ AllocationFlags flags) {
+ DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Immediate(0x7091));
+ mov(result_end, Immediate(0x7191));
+ if (scratch.is_valid()) {
+ mov(scratch, Immediate(0x7291));
+ }
+ // object_size is left unchanged by this function.
+ }
+ jmp(gc_required);
+ return;
+ }
+ DCHECK(!result.is(result_end));
+
+ // Load address of new object into result.
+ LoadAllocationTopHelper(result, scratch, flags);
+
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
+ Label aligned;
+ test(result, Immediate(kDoubleAlignmentMask));
+ j(zero, &aligned, Label::kNear);
+ if ((flags & PRETENURE) != 0) {
+ cmp(result, Operand::StaticVariable(allocation_limit));
+ j(above_equal, gc_required);
+ }
+ mov(Operand(result, 0),
+ Immediate(isolate()->factory()->one_pointer_filler_map()));
+ add(result, Immediate(kDoubleSize / 2));
+ bind(&aligned);
+ }
+
+ // Calculate new top and bail out if space is exhausted.
+ if (!object_size.is(result_end)) {
+ mov(result_end, object_size);
+ }
+ add(result_end, result);
+ cmp(result_end, Operand::StaticVariable(allocation_limit));
+ j(above, gc_required);
+
+ // Tag result.
+ DCHECK(kHeapObjectTag == 1);
+ inc(result);
+
+ UpdateAllocationTopHelper(result_end, scratch, flags);
+}
+
+void MacroAssembler::AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ MutableMode mode) {
+ // Allocate heap number in new space.
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
+ NO_ALLOCATION_FLAGS);
+
+ Handle<Map> map = mode == MUTABLE
+ ? isolate()->factory()->mutable_heap_number_map()
+ : isolate()->factory()->heap_number_map();
+
+ // Set the map.
+ mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
+}
+
+void MacroAssembler::AllocateJSValue(Register result, Register constructor,
+ Register value, Register scratch,
+ Label* gc_required) {
+ DCHECK(!result.is(constructor));
+ DCHECK(!result.is(scratch));
+ DCHECK(!result.is(value));
+
+ // Allocate JSValue in new space.
+ Allocate(JSValue::kSize, result, scratch, no_reg, gc_required,
+ NO_ALLOCATION_FLAGS);
+
+ // Initialize the JSValue.
+ LoadGlobalFunctionInitialMap(constructor, scratch);
+ mov(FieldOperand(result, HeapObject::kMapOffset), scratch);
+ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
+ mov(FieldOperand(result, JSObject::kPropertiesOrHashOffset), scratch);
+ mov(FieldOperand(result, JSObject::kElementsOffset), scratch);
+ mov(FieldOperand(result, JSValue::kValueOffset), value);
+ STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
+}
+
+void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
+ Register end_address,
+ Register filler) {
+ Label loop, entry;
+ jmp(&entry, Label::kNear);
+ bind(&loop);
+ mov(Operand(current_address, 0), filler);
+ add(current_address, Immediate(kPointerSize));
+ bind(&entry);
+ cmp(current_address, end_address);
+ j(below, &loop, Label::kNear);
+}
+
+
+void MacroAssembler::BooleanBitTest(Register object,
+ int field_offset,
+ int bit_index) {
+ bit_index += kSmiTagSize + kSmiShiftSize;
+ DCHECK(base::bits::IsPowerOfTwo(kBitsPerByte));
+ int byte_index = bit_index / kBitsPerByte;
+ int byte_bit_index = bit_index & (kBitsPerByte - 1);
+ test_b(FieldOperand(object, field_offset + byte_index),
+ Immediate(1 << byte_bit_index));
+}
+
+void MacroAssembler::GetMapConstructor(Register result, Register map,
+ Register temp) {
+ Label done, loop;
+ mov(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset));
+ bind(&loop);
+ JumpIfSmi(result, &done, Label::kNear);
+ CmpObjectType(result, MAP_TYPE, temp);
+ j(not_equal, &done, Label::kNear);
+ mov(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset));
+ jmp(&loop);
+ bind(&done);
+}
+
+void MacroAssembler::CallStub(CodeStub* stub) {
+ DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
+ call(stub->GetCode(), RelocInfo::CODE_TARGET);
+}
+
+void TurboAssembler::CallStubDelayed(CodeStub* stub) {
+ DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
+ call(stub);
+}
+
+void MacroAssembler::TailCallStub(CodeStub* stub) {
+ jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
+}
+
+bool TurboAssembler::AllowThisStubCall(CodeStub* stub) {
+ return has_frame() || !stub->SometimesSetsUpAFrame();
+}
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ Move(eax, Immediate(num_arguments));
+ mov(ebx, Immediate(ExternalReference(f, isolate())));
+ CEntryStub ces(isolate(), 1, save_doubles);
+ CallStub(&ces);
+}
+
+void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
+ SaveFPRegsMode save_doubles) {
+ const Runtime::Function* f = Runtime::FunctionForId(fid);
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ Move(eax, Immediate(f->nargs));
+ mov(ebx, Immediate(ExternalReference(f, isolate())));
+ CallStubDelayed(new (zone) CEntryStub(nullptr, 1, save_doubles));
+}
+
+void MacroAssembler::CallExternalReference(ExternalReference ref,
+ int num_arguments) {
+ mov(eax, Immediate(num_arguments));
+ mov(ebx, Immediate(ref));
+
+ CEntryStub stub(isolate(), 1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
+ // ----------- S t a t e -------------
+ // -- esp[0] : return address
+ // -- esp[8] : argument num_arguments - 1
+ // ...
+ // -- esp[8 * num_arguments] : argument 0 (receiver)
+ //
+ // For runtime functions with variable arguments:
+ // -- eax : number of arguments
+ // -----------------------------------
+
+ const Runtime::Function* function = Runtime::FunctionForId(fid);
+ DCHECK_EQ(1, function->result_size);
+ if (function->nargs >= 0) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(eax, Immediate(function->nargs));
+ }
+ JumpToExternalReference(ExternalReference(fid, isolate()));
+}
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
+ bool builtin_exit_frame) {
+ // Set the entry point and jump to the C entry runtime stub.
+ mov(ebx, Immediate(ext));
+ CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
+ builtin_exit_frame);
+ jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+void TurboAssembler::PrepareForTailCall(
+ const ParameterCount& callee_args_count, Register caller_args_count_reg,
+ Register scratch0, Register scratch1, ReturnAddressState ra_state,
+ int number_of_temp_values_after_return_address) {
+#if DEBUG
+ if (callee_args_count.is_reg()) {
+ DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
+ scratch1));
+ } else {
+ DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
+ }
+ DCHECK(ra_state != ReturnAddressState::kNotOnStack ||
+ number_of_temp_values_after_return_address == 0);
+#endif
+
+ // Calculate the destination address where we will put the return address
+ // after we drop current frame.
+ Register new_sp_reg = scratch0;
+ if (callee_args_count.is_reg()) {
+ sub(caller_args_count_reg, callee_args_count.reg());
+ lea(new_sp_reg,
+ Operand(ebp, caller_args_count_reg, times_pointer_size,
+ StandardFrameConstants::kCallerPCOffset -
+ number_of_temp_values_after_return_address * kPointerSize));
+ } else {
+ lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size,
+ StandardFrameConstants::kCallerPCOffset -
+ (callee_args_count.immediate() +
+ number_of_temp_values_after_return_address) *
+ kPointerSize));
+ }
+
+ if (FLAG_debug_code) {
+ cmp(esp, new_sp_reg);
+ Check(below, kStackAccessBelowStackPointer);
+ }
+
+ // Copy return address from caller's frame to current frame's return address
+ // to avoid its trashing and let the following loop copy it to the right
+ // place.
+ Register tmp_reg = scratch1;
+ if (ra_state == ReturnAddressState::kOnStack) {
+ mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset));
+ mov(Operand(esp, number_of_temp_values_after_return_address * kPointerSize),
+ tmp_reg);
+ } else {
+ DCHECK(ReturnAddressState::kNotOnStack == ra_state);
+ DCHECK_EQ(0, number_of_temp_values_after_return_address);
+ Push(Operand(ebp, StandardFrameConstants::kCallerPCOffset));
+ }
+
+ // Restore caller's frame pointer now as it could be overwritten by
+ // the copying loop.
+ mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+
+ // +2 here is to copy both receiver and return address.
+ Register count_reg = caller_args_count_reg;
+ if (callee_args_count.is_reg()) {
+ lea(count_reg, Operand(callee_args_count.reg(),
+ 2 + number_of_temp_values_after_return_address));
+ } else {
+ mov(count_reg, Immediate(callee_args_count.immediate() + 2 +
+ number_of_temp_values_after_return_address));
+ // TODO(ishell): Unroll copying loop for small immediate values.
+ }
+
+ // Now copy callee arguments to the caller frame going backwards to avoid
+ // callee arguments corruption (source and destination areas could overlap).
+ Label loop, entry;
+ jmp(&entry, Label::kNear);
+ bind(&loop);
+ dec(count_reg);
+ mov(tmp_reg, Operand(esp, count_reg, times_pointer_size, 0));
+ mov(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg);
+ bind(&entry);
+ cmp(count_reg, Immediate(0));
+ j(not_equal, &loop, Label::kNear);
+
+ // Leave current frame.
+ mov(esp, new_sp_reg);
+}
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ Label::Distance done_near,
+ const CallWrapper& call_wrapper) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label invoke;
+ if (expected.is_immediate()) {
+ DCHECK(actual.is_immediate());
+ mov(eax, actual.immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ mov(ebx, expected.immediate());
+ }
+ }
+ } else {
+ if (actual.is_immediate()) {
+ // Expected is in register, actual is immediate. This is the
+ // case when we invoke function values without going through the
+ // IC mechanism.
+ mov(eax, actual.immediate());
+ cmp(expected.reg(), actual.immediate());
+ j(equal, &invoke);
+ DCHECK(expected.reg().is(ebx));
+ } else if (!expected.reg().is(actual.reg())) {
+ // Both expected and actual are in (different) registers. This
+ // is the case when we invoke functions using call and apply.
+ cmp(expected.reg(), actual.reg());
+ j(equal, &invoke);
+ DCHECK(actual.reg().is(eax));
+ DCHECK(expected.reg().is(ebx));
+ } else {
+ Move(eax, actual.reg());
+ }
+ }
+
+ if (!definitely_matches) {
+ Handle<Code> adaptor =
+ isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
+ call(adaptor, RelocInfo::CODE_TARGET);
+ call_wrapper.AfterCall();
+ if (!*definitely_mismatches) {
+ jmp(done, done_near);
+ }
+ } else {
+ jmp(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&invoke);
+ }
+}
+
+void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual) {
+ Label skip_hook;
+ ExternalReference debug_hook_active =
+ ExternalReference::debug_hook_on_function_call_address(isolate());
+ cmpb(Operand::StaticVariable(debug_hook_active), Immediate(0));
+ j(equal, &skip_hook);
+ {
+ FrameScope frame(this,
+ has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
+ if (expected.is_reg()) {
+ SmiTag(expected.reg());
+ Push(expected.reg());
+ }
+ if (actual.is_reg()) {
+ SmiTag(actual.reg());
+ Push(actual.reg());
+ }
+ if (new_target.is_valid()) {
+ Push(new_target);
+ }
+ Push(fun);
+ Push(fun);
+ CallRuntime(Runtime::kDebugOnFunctionCall);
+ Pop(fun);
+ if (new_target.is_valid()) {
+ Pop(new_target);
+ }
+ if (actual.is_reg()) {
+ Pop(actual.reg());
+ SmiUntag(actual.reg());
+ }
+ if (expected.is_reg()) {
+ Pop(expected.reg());
+ SmiUntag(expected.reg());
+ }
+ }
+ bind(&skip_hook);
+}
+
+
+void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+ DCHECK(function.is(edi));
+ DCHECK_IMPLIES(new_target.is_valid(), new_target.is(edx));
+
+ if (call_wrapper.NeedsDebugHookCheck()) {
+ CheckDebugHook(function, new_target, expected, actual);
+ }
+
+ // Clear the new.target register if not given.
+ if (!new_target.is_valid()) {
+ mov(edx, isolate()->factory()->undefined_value());
+ }
+
+ Label done;
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
+ Label::kNear, call_wrapper);
+ if (!definitely_mismatches) {
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ Operand code = FieldOperand(function, JSFunction::kCodeEntryOffset);
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(code));
+ call(code);
+ call_wrapper.AfterCall();
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ jmp(code);
+ }
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun, Register new_target,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ DCHECK(fun.is(edi));
+ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
+ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
+
+ ParameterCount expected(ebx);
+ InvokeFunctionCode(edi, new_target, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ DCHECK(fun.is(edi));
+ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ InvokeFunctionCode(edi, no_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ Move(edi, function);
+ InvokeFunction(edi, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ for (int i = 1; i < context_chain_length; i++) {
+ mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in esi).
+ mov(dst, esi);
+ }
+
+ // We should not have found a with context by walking the context chain
+ // (i.e., the static scope chain and runtime context chain do not agree).
+ // A variable occurring in such a scope should have slot type LOOKUP and
+ // not CONTEXT.
+ if (emit_debug_code()) {
+ cmp(FieldOperand(dst, HeapObject::kMapOffset),
+ isolate()->factory()->with_context_map());
+ Check(not_equal, kVariableResolvedToWithContext);
+ }
+}
+
+
+void MacroAssembler::LoadGlobalProxy(Register dst) {
+ mov(dst, NativeContextOperand());
+ mov(dst, ContextOperand(dst, Context::GLOBAL_PROXY_INDEX));
+}
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the native context from the current context.
+ mov(function, NativeContextOperand());
+ // Load the function from the native context.
+ mov(function, ContextOperand(function, index));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map) {
+ // Load the initial map. The global functions all have initial maps.
+ mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
+ jmp(&ok);
+ bind(&fail);
+ Abort(kGlobalFunctionsMustHaveInitialMap);
+ bind(&ok);
+ }
+}
+
+
+// Store the value in register src in the safepoint register stack
+// slot for register dst.
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
+ mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
+ mov(SafepointRegisterSlot(dst), src);
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ mov(dst, SafepointRegisterSlot(src));
+}
+
+
+Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
+ return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the lowest encoding,
+ // which means that lowest encodings are furthest away from
+ // the stack pointer.
+ DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
+ return kNumSafepointRegisters - reg_code - 1;
+}
+
+
+void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
+ cmp(reg, object);
+}
+
+void MacroAssembler::PushObject(Handle<Object> object) {
+ if (object->IsHeapObject()) {
+ Push(Handle<HeapObject>::cast(object));
+ } else {
+ Push(Smi::cast(*object));
+ }
+}
+
+void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
+ mov(value, cell);
+ mov(value, FieldOperand(value, WeakCell::kValueOffset));
+}
+
+
+void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
+ Label* miss) {
+ GetWeakValue(value, cell);
+ JumpIfSmi(value, miss);
+}
+
+void TurboAssembler::Ret() { ret(0); }
+
+void TurboAssembler::Ret(int bytes_dropped, Register scratch) {
+ if (is_uint16(bytes_dropped)) {
+ ret(bytes_dropped);
+ } else {
+ pop(scratch);
+ add(esp, Immediate(bytes_dropped));
+ push(scratch);
+ ret(0);
+ }
+}
+
+
+void TurboAssembler::VerifyX87StackDepth(uint32_t depth) {
+ // Turn off the stack depth check when serializer is enabled to reduce the
+ // code size.
+ if (serializer_enabled()) return;
+ // Make sure the floating point stack is either empty or has depth items.
+ DCHECK(depth <= 7);
+ // This is very expensive.
+ DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts);
+
+ // The top-of-stack (tos) is 7 if there is one item pushed.
+ int tos = (8 - depth) % 8;
+ const int kTopMask = 0x3800;
+ push(eax);
+ fwait();
+ fnstsw_ax();
+ and_(eax, kTopMask);
+ shr(eax, 11);
+ cmp(eax, Immediate(tos));
+ Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
+ fnclex();
+ pop(eax);
+}
+
+
+void MacroAssembler::Drop(int stack_elements) {
+ if (stack_elements > 0) {
+ add(esp, Immediate(stack_elements * kPointerSize));
+ }
+}
+
+
+void TurboAssembler::Move(Register dst, Register src) {
+ if (!dst.is(src)) {
+ mov(dst, src);
+ }
+}
+
+
+void TurboAssembler::Move(Register dst, const Immediate& x) {
+ if (!x.is_heap_object_request() && x.is_zero() &&
+ RelocInfo::IsNone(x.rmode())) {
+ xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.
+ } else {
+ mov(dst, x);
+ }
+}
+
+
+void TurboAssembler::Move(const Operand& dst, const Immediate& x) {
+ mov(dst, x);
+}
+
+
+void TurboAssembler::Move(Register dst, Handle<HeapObject> object) {
+ mov(dst, object);
+}
+
+
+void TurboAssembler::Lzcnt(Register dst, const Operand& src) {
+ // TODO(intel): Add support for LZCNT (with ABM/BMI1).
+ Label not_zero_src;
+ bsr(dst, src);
+ j(not_zero, &not_zero_src, Label::kNear);
+ Move(dst, Immediate(63)); // 63^31 == 32
+ bind(&not_zero_src);
+ xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x.
+}
+
+
+void TurboAssembler::Tzcnt(Register dst, const Operand& src) {
+ // TODO(intel): Add support for TZCNT (with ABM/BMI1).
+ Label not_zero_src;
+ bsf(dst, src);
+ j(not_zero, &not_zero_src, Label::kNear);
+ Move(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0.
+ bind(&not_zero_src);
+}
+
+
+void TurboAssembler::Popcnt(Register dst, const Operand& src) {
+ // TODO(intel): Add support for POPCNT (with POPCNT)
+ // if (CpuFeatures::IsSupported(POPCNT)) {
+ // CpuFeatureScope scope(this, POPCNT);
+ // popcnt(dst, src);
+ // return;
+ // }
+ UNREACHABLE();
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Operand operand = Operand::StaticVariable(ExternalReference(counter));
+ if (value == 1) {
+ inc(operand);
+ } else {
+ add(operand, Immediate(value));
+ }
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Operand operand = Operand::StaticVariable(ExternalReference(counter));
+ if (value == 1) {
+ dec(operand);
+ } else {
+ sub(operand, Immediate(value));
+ }
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(Condition cc,
+ StatsCounter* counter,
+ int value) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Label skip;
+ j(NegateCondition(cc), &skip);
+ pushfd();
+ IncrementCounter(counter, value);
+ popfd();
+ bind(&skip);
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(Condition cc,
+ StatsCounter* counter,
+ int value) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ Label skip;
+ j(NegateCondition(cc), &skip);
+ pushfd();
+ DecrementCounter(counter, value);
+ popfd();
+ bind(&skip);
+ }
+}
+
+
+void TurboAssembler::Assert(Condition cc, BailoutReason reason) {
+ if (emit_debug_code()) Check(cc, reason);
+}
+
+void TurboAssembler::AssertUnreachable(BailoutReason reason) {
+ if (emit_debug_code()) Abort(reason);
+}
+
+
+
+void TurboAssembler::Check(Condition cc, BailoutReason reason) {
+ Label L;
+ j(cc, &L);
+ Abort(reason);
+ // will not return here
+ bind(&L);
+}
+
+
+void TurboAssembler::CheckStackAlignment() {
+ int frame_alignment = base::OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ Label alignment_as_expected;
+ test(esp, Immediate(frame_alignment_mask));
+ j(zero, &alignment_as_expected);
+ // Abort if stack is not aligned.
+ int3();
+ bind(&alignment_as_expected);
+ }
+}
+
+
+void TurboAssembler::Abort(BailoutReason reason) {
+#ifdef DEBUG
+ const char* msg = GetBailoutReason(reason);
+ if (msg != NULL) {
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+
+ if (FLAG_trap_on_abort) {
+ int3();
+ return;
+ }
+#endif
+
+ Move(edx, Smi::FromInt(static_cast<int>(reason)));
+
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame()) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
+ } else {
+ Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
+ }
+ // will not return here
+ int3();
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+ Register descriptors) {
+ mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+ mov(dst, FieldOperand(map, Map::kBitField3Offset));
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::LoadAccessor(Register dst, Register holder,
+ int accessor_index,
+ AccessorComponent accessor) {
+ mov(dst, FieldOperand(holder, HeapObject::kMapOffset));
+ LoadInstanceDescriptors(dst, dst);
+ mov(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
+ int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
+ : AccessorPair::kSetterOffset;
+ mov(dst, FieldOperand(dst, offset));
+}
+
+void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
+ Register object2,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Check that both objects are not smis.
+ STATIC_ASSERT(kSmiTag == 0);
+ mov(scratch1, object1);
+ and_(scratch1, object2);
+ JumpIfSmi(scratch1, failure);
+
+ // Load instance type for both strings.
+ mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
+ mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
+ movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
+ movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
+
+ // Check that both are flat one-byte strings.
+ const int kFlatOneByteStringMask =
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
+ const int kFlatOneByteStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ // Interleave bits from both instance types and compare them in one check.
+ const int kShift = 8;
+ DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << kShift));
+ and_(scratch1, kFlatOneByteStringMask);
+ and_(scratch2, kFlatOneByteStringMask);
+ shl(scratch2, kShift);
+ or_(scratch1, scratch2);
+ cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << kShift));
+ j(not_equal, failure);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
+ Label* not_unique_name,
+ Label::Distance distance) {
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ Label succeed;
+ test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
+ j(zero, &succeed);
+ cmpb(operand, Immediate(SYMBOL_TYPE));
+ j(not_equal, not_unique_name, distance);
+
+ bind(&succeed);
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ Register value,
+ uint32_t encoding_mask) {
+ Label is_object;
+ JumpIfNotSmi(string, &is_object, Label::kNear);
+ Abort(kNonObject);
+ bind(&is_object);
+
+ push(value);
+ mov(value, FieldOperand(string, HeapObject::kMapOffset));
+ movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
+
+ and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
+ cmp(value, Immediate(encoding_mask));
+ pop(value);
+ Check(equal, kUnexpectedStringType);
+
+ // The index is assumed to be untagged coming in, tag it to compare with the
+ // string length without using a temp register, it is restored at the end of
+ // this function.
+ SmiTag(index);
+ Check(no_overflow, kIndexIsTooLarge);
+
+ cmp(index, FieldOperand(string, String::kLengthOffset));
+ Check(less, kIndexIsTooLarge);
+
+ cmp(index, Immediate(Smi::kZero));
+ Check(greater_equal, kIndexIsNegative);
+
+ // Restore the index
+ SmiUntag(index);
+}
+
+
+void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
+ int frame_alignment = base::OS::ActivationFrameAlignment();
+ if (frame_alignment != 0) {
+ // Make stack end at alignment and make room for num_arguments words
+ // and the original value of esp.
+ mov(scratch, esp);
+ sub(esp, Immediate((num_arguments + 1) * kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ and_(esp, -frame_alignment);
+ mov(Operand(esp, num_arguments * kPointerSize), scratch);
+ } else {
+ sub(esp, Immediate(num_arguments * kPointerSize));
+ }
+}
+
+
+void TurboAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ // Trashing eax is ok as it will be the return value.
+ mov(eax, Immediate(function));
+ CallCFunction(eax, num_arguments);
+}
+
+
+void TurboAssembler::CallCFunction(Register function, int num_arguments) {
+ DCHECK(has_frame());
+ // Check stack alignment.
+ if (emit_debug_code()) {
+ CheckStackAlignment();
+ }
+
+ call(function);
+ if (base::OS::ActivationFrameAlignment() != 0) {
+ mov(esp, Operand(esp, num_arguments * kPointerSize));
+ } else {
+ add(esp, Immediate(num_arguments * kPointerSize));
+ }
+}
+
+
+#ifdef DEBUG
+bool AreAliased(Register reg1,
+ Register reg2,
+ Register reg3,
+ Register reg4,
+ Register reg5,
+ Register reg6,
+ Register reg7,
+ Register reg8) {
+ int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
+ reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
+ reg7.is_valid() + reg8.is_valid();
+
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+ if (reg7.is_valid()) regs |= reg7.bit();
+ if (reg8.is_valid()) regs |= reg8.bit();
+ int n_of_non_aliasing_regs = NumRegs(regs);
+
+ return n_of_valid_regs != n_of_non_aliasing_regs;
+}
+#endif
+
+
+CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size)
+ : address_(address),
+ size_(size),
+ masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) {
+ // Create a new macro assembler pointing to the address of the code to patch.
+ // The size is adjusted with kGap on order for the assembler to generate size
+ // bytes of instructions without failing with buffer size constraints.
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+ // Indicate that code has changed.
+ Assembler::FlushICache(masm_.isolate(), address_, size_);
+
+ // Check that the code was patched as expected.
+ DCHECK(masm_.pc_ == address_ + size_);
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
+ Condition cc, Label* condition_met,
+ Label::Distance condition_met_distance) {
+ DCHECK(cc == zero || cc == not_zero);
+ if (scratch.is(object)) {
+ and_(scratch, Immediate(~Page::kPageAlignmentMask));
+ } else {
+ mov(scratch, Immediate(~Page::kPageAlignmentMask));
+ and_(scratch, object);
+ }
+ if (mask < (1 << kBitsPerByte)) {
+ test_b(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
+ } else {
+ test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
+ }
+ j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::CheckPageFlagForMap(
+ Handle<Map> map,
+ int mask,
+ Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance) {
+ DCHECK(cc == zero || cc == not_zero);
+ Page* page = Page::FromAddress(map->address());
+ DCHECK(!serializer_enabled()); // Serializer cannot match page_flags.
+ ExternalReference reference(ExternalReference::page_flags(page));
+ // The inlined static address check of the page's flags relies
+ // on maps never being compacted.
+ DCHECK(!isolate()->heap()->mark_compact_collector()->
+ IsOnEvacuationCandidate(*map));
+ if (mask < (1 << kBitsPerByte)) {
+ test_b(Operand::StaticVariable(reference), Immediate(mask));
+ } else {
+ test(Operand::StaticVariable(reference), Immediate(mask));
+ }
+ j(cc, condition_met, condition_met_distance);
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black,
+ Label::Distance on_black_near) {
+ HasColor(object, scratch0, scratch1, on_black, on_black_near, 1,
+ 1); // kBlackBitPattern.
+ DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Label* has_color,
+ Label::Distance has_color_distance,
+ int first_bit,
+ int second_bit) {
+ DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
+
+ GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+ Label other_color, word_boundary;
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
+ add(mask_scratch, mask_scratch); // Shift left 1 by adding.
+ j(zero, &word_boundary, Label::kNear);
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+ jmp(&other_color, Label::kNear);
+
+ bind(&word_boundary);
+ test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize),
+ Immediate(1));
+
+ j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
+ bind(&other_color);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg) {
+ DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
+ mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
+ and_(bitmap_reg, addr_reg);
+ mov(ecx, addr_reg);
+ int shift =
+ Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
+ shr(ecx, shift);
+ and_(ecx,
+ (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
+
+ add(bitmap_reg, ecx);
+ mov(ecx, addr_reg);
+ shr(ecx, kPointerSizeLog2);
+ and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
+ mov(mask_reg, Immediate(1));
+ shl_cl(mask_reg);
+}
+
+
+void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
+ Register mask_scratch, Label* value_is_white,
+ Label::Distance distance) {
+ DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
+ GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
+ DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
+ DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ j(zero, value_is_white, Label::kNear);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ mov(dst, FieldOperand(map, Map::kBitField3Offset));
+ and_(dst, Immediate(Map::EnumLengthBits::kMask));
+ SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Label* call_runtime) {
+ Label next, start;
+ mov(ecx, eax);
+
+ // Check if the enum length field is properly initialized, indicating that
+ // there is an enum cache.
+ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+ EnumLength(edx, ebx);
+ cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
+ j(equal, call_runtime);
+
+ jmp(&start);
+
+ bind(&next);
+ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
+
+ // For all objects but the receiver, check that the cache is empty.
+ EnumLength(edx, ebx);
+ cmp(edx, Immediate(Smi::kZero));
+ j(not_equal, call_runtime);
+
+ bind(&start);
+
+ // Check that there are no elements. Register rcx contains the current JS
+ // object we've reached through the prototype chain.
+ Label no_elements;
+ mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
+ cmp(ecx, isolate()->factory()->empty_fixed_array());
+ j(equal, &no_elements);
+
+ // Second chance, the object may be using the empty slow element dictionary.
+ cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
+ j(not_equal, call_runtime);
+
+ bind(&no_elements);
+ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
+ cmp(ecx, isolate()->factory()->null_value());
+ j(not_equal, &next);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(
+ Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found) {
+ Label map_check;
+ Label top_check;
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+ const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
+ const int kMementoLastWordOffset =
+ kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
+
+ // Bail out if the object is not in new space.
+ JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
+ // If the object is in new space, we need to check whether it is on the same
+ // page as the current top.
+ lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
+ xor_(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
+ test(scratch_reg, Immediate(~Page::kPageAlignmentMask));
+ j(zero, &top_check);
+ // The object is on a different page than allocation top. Bail out if the
+ // object sits on the page boundary as no memento can follow and we cannot
+ // touch the memory following it.
+ lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
+ xor_(scratch_reg, receiver_reg);
+ test(scratch_reg, Immediate(~Page::kPageAlignmentMask));
+ j(not_zero, no_memento_found);
+ // Continue with the actual map check.
+ jmp(&map_check);
+ // If top is on the same page as the current object, we need to check whether
+ // we are below top.
+ bind(&top_check);
+ lea(scratch_reg, Operand(receiver_reg, kMementoLastWordOffset));
+ cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
+ j(greater_equal, no_memento_found);
+ // Memento map check.
+ bind(&map_check);
+ mov(scratch_reg, Operand(receiver_reg, kMementoMapOffset));
+ cmp(scratch_reg, Immediate(isolate()->factory()->allocation_memento_map()));
+}
+
+void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
+ DCHECK(!dividend.is(eax));
+ DCHECK(!dividend.is(edx));
+ base::MagicNumbersForDivision<uint32_t> mag =
+ base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
+ mov(eax, Immediate(mag.multiplier));
+ imul(dividend);
+ bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
+ if (divisor > 0 && neg) add(edx, dividend);
+ if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
+ if (mag.shift > 0) sar(edx, mag.shift);
+ mov(eax, dividend);
+ shr(eax, 31);
+ add(edx, eax);
+}
+
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/macro-assembler-x87.h 2017-12-28 02:05:16.624566310 +0100
@@ -0,0 +1,921 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
+#define V8_X87_MACRO_ASSEMBLER_X87_H_
+
+#include "src/assembler.h"
+#include "src/bailout-reason.h"
+#include "src/frames.h"
+#include "src/globals.h"
+
+namespace v8 {
+namespace internal {
+
+// Give alias names to registers for calling conventions.
+const Register kReturnRegister0 = {Register::kCode_eax};
+const Register kReturnRegister1 = {Register::kCode_edx};
+const Register kReturnRegister2 = {Register::kCode_edi};
+const Register kJSFunctionRegister = {Register::kCode_edi};
+const Register kContextRegister = {Register::kCode_esi};
+const Register kAllocateSizeRegister = {Register::kCode_edx};
+const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
+const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
+const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
+const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
+const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
+const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
+const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
+const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
+
+// Spill slots used by interpreter dispatch calling convention.
+const int kInterpreterDispatchTableSpillSlot = -1;
+
+// Convenience for platform-independent signatures. We do not normally
+// distinguish memory operands from other operands on ia32.
+typedef Operand MemOperand;
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+ kPointersToHereMaybeInteresting,
+ kPointersToHereAreAlwaysInteresting
+};
+
+enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
+
+enum class ReturnAddressState { kOnStack, kNotOnStack };
+
+#ifdef DEBUG
+bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
+ Register reg4 = no_reg, Register reg5 = no_reg,
+ Register reg6 = no_reg, Register reg7 = no_reg,
+ Register reg8 = no_reg);
+#endif
+
+class TurboAssembler: public Assembler {
+ public:
+ TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
+ CodeObjectRequired create_code_object)
+ : Assembler(isolate, buffer, buffer_size), isolate_(isolate) {
+ if (create_code_object == CodeObjectRequired::kYes) {
+ code_object_ =
+ Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate);
+ }
+ }
+
+ void set_has_frame(bool value) { has_frame_ = value; }
+ bool has_frame() { return has_frame_; }
+
+ Isolate* isolate() const { return isolate_; }
+
+ Handle<HeapObject> CodeObject() {
+ DCHECK(!code_object_.is_null());
+ return code_object_;
+ }
+
+ void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ // Activation support.
+ void EnterFrame(StackFrame::Type type);
+ void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
+ // Out-of-line constant pool not implemented on x87.
+ UNREACHABLE();
+ }
+ void LeaveFrame(StackFrame::Type type);
+
+ // Print a message to stdout and abort execution.
+ void Abort(BailoutReason reason);
+
+ // Calls Abort(msg) if the condition cc is not satisfied.
+ // Use --debug_code to enable.
+ void Assert(Condition cc, BailoutReason reason);
+
+ // Like Assert(), but without condition.
+ // Use --debug_code to enable.
+ void AssertUnreachable(BailoutReason reason);
+
+ // Like Assert(), but always enabled.
+ void Check(Condition cc, BailoutReason reason);
+
+ // Check that the stack is aligned.
+ void CheckStackAlignment();
+
+ // Nop, because x87 does not have a root register.
+ void InitializeRootRegister() {}
+
+ // Move a constant into a destination using the most efficient encoding.
+ void Move(Register dst, const Immediate& x);
+
+ void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
+
+ // Move if the registers are not identical.
+ void Move(Register target, Register source);
+
+ void Move(const Operand& dst, const Immediate& x);
+
+ void Move(Register dst, Handle<HeapObject> handle);
+
+ void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
+ void Call(Label* target) { call(target); }
+
+ inline bool AllowThisStubCall(CodeStub* stub);
+ void CallStubDelayed(CodeStub* stub);
+
+ void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+
+ // Jump the register contains a smi.
+ inline void JumpIfSmi(Register value, Label* smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(zero, smi_label, distance);
+ }
+ // Jump if the operand is a smi.
+ inline void JumpIfSmi(Operand value, Label* smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(zero, smi_label, distance);
+ }
+
+ void SmiUntag(Register reg) { sar(reg, kSmiTagSize); }
+
+ // Removes current frame and its arguments from the stack preserving
+ // the arguments and a return address pushed to the stack for the next call.
+ // |ra_state| defines whether return address is already pushed to stack or
+ // not. Both |callee_args_count| and |caller_args_count_reg| do not include
+ // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
+ // is trashed. |number_of_temp_values_after_return_address| specifies
+ // the number of words pushed to the stack after the return address. This is
+ // to allow "allocation" of scratch registers that this function requires
+ // by saving their values on the stack.
+ void PrepareForTailCall(const ParameterCount& callee_args_count,
+ Register caller_args_count_reg, Register scratch0,
+ Register scratch1, ReturnAddressState ra_state,
+ int number_of_temp_values_after_return_address);
+
+ // Before calling a C-function from generated code, align arguments on stack.
+ // After aligning the frame, arguments must be stored in esp[0], esp[4],
+ // etc., not pushed. The argument count assumes all arguments are word sized.
+ // Some compilers/platforms require the stack to be aligned when calling
+ // C++ code.
+ // Needs a scratch register to do some arithmetic. This register will be
+ // trashed.
+ void PrepareCallCFunction(int num_arguments, Register scratch);
+
+ // Calls a C function and cleans up the space for arguments allocated
+ // by PrepareCallCFunction. The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function, int num_arguments);
+ void CallCFunction(Register function, int num_arguments);
+
+ void ShlPair(Register high, Register low, uint8_t imm8);
+ void ShlPair_cl(Register high, Register low);
+ void ShrPair(Register high, Register low, uint8_t imm8);
+ void ShrPair_cl(Register high, Register src);
+ void SarPair(Register high, Register low, uint8_t imm8);
+ void SarPair_cl(Register high, Register low);
+
+ // Generates function and stub prologue code.
+ void StubPrologue(StackFrame::Type type);
+ void Prologue(bool code_pre_aging);
+
+ void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
+ void Lzcnt(Register dst, const Operand& src);
+
+ void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
+ void Tzcnt(Register dst, const Operand& src);
+
+ void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
+ void Popcnt(Register dst, const Operand& src);
+
+ void Ret();
+
+ // Return and drop arguments from stack, where the number of arguments
+ // may be bigger than 2^16 - 1. Requires a scratch register.
+ void Ret(int bytes_dropped, Register scratch);
+
+ // Insert code to verify that the x87 stack has the specified depth (0-7)
+ void VerifyX87StackDepth(uint32_t depth);
+
+ void LoadUint32NoSSE2(Register src) {
+ LoadUint32NoSSE2(Operand(src));
+ }
+ void LoadUint32NoSSE2(const Operand& src);
+
+ void SlowTruncateToIDelayed(Zone* zone, Register result_reg,
+ Register input_reg,
+ int offset = HeapNumber::kValueOffset -
+ kHeapObjectTag);
+
+ void Push(Register src) { push(src); }
+ void Push(const Operand& src) { push(src); }
+ void Push(Immediate value) { push(value); }
+ void Push(Handle<HeapObject> handle) { push(Immediate(handle)); }
+ void Push(Smi* smi) { Push(Immediate(smi)); }
+
+ private:
+ bool has_frame_;
+ Isolate* isolate_;
+ // This handle will be patched with the code object on installation.
+ Handle<HeapObject> code_object_;
+};
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler: public TurboAssembler {
+ public:
+ MacroAssembler(Isolate* isolate, void* buffer, int size,
+ CodeObjectRequired create_code_object);
+
+ int jit_cookie() const { return jit_cookie_; }
+
+ void Load(Register dst, const Operand& src, Representation r);
+ void Store(Register src, const Operand& dst, Representation r);
+
+ // Load a register with a long value as efficiently as possible.
+ void Set(Register dst, int32_t x) {
+ if (x == 0) {
+ xor_(dst, dst);
+ } else {
+ mov(dst, Immediate(x));
+ }
+ }
+ void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
+
+ // Operations on roots in the root-array.
+ void LoadRoot(Register destination, Heap::RootListIndex index);
+ void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
+ void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
+ // These methods can only be used with constant roots (i.e. non-writable
+ // and not in new space).
+ void CompareRoot(Register with, Heap::RootListIndex index);
+ void CompareRoot(const Operand& with, Heap::RootListIndex index);
+ void PushRoot(Heap::RootListIndex index);
+
+ // Compare the object in a register to a value and jump if they are equal.
+ void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
+ Label::Distance if_equal_distance = Label::kFar) {
+ CompareRoot(with, index);
+ j(equal, if_equal, if_equal_distance);
+ }
+ void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
+ Label* if_equal,
+ Label::Distance if_equal_distance = Label::kFar) {
+ CompareRoot(with, index);
+ j(equal, if_equal, if_equal_distance);
+ }
+
+ // Compare the object in a register to a value and jump if they are not equal.
+ void JumpIfNotRoot(Register with, Heap::RootListIndex index,
+ Label* if_not_equal,
+ Label::Distance if_not_equal_distance = Label::kFar) {
+ CompareRoot(with, index);
+ j(not_equal, if_not_equal, if_not_equal_distance);
+ }
+ void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
+ Label* if_not_equal,
+ Label::Distance if_not_equal_distance = Label::kFar) {
+ CompareRoot(with, index);
+ j(not_equal, if_not_equal, if_not_equal_distance);
+ }
+
+ // These functions do not arrange the registers in any particular order so
+ // they are not useful for calls that can cause a GC. The caller can
+ // exclude up to 3 registers that do not need to be saved and restored.
+ void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
+ Register exclusion2 = no_reg,
+ Register exclusion3 = no_reg);
+ void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
+ Register exclusion2 = no_reg,
+ Register exclusion3 = no_reg);
+
+ // ---------------------------------------------------------------------------
+ // GC Support
+ enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register object, // Used for debug code.
+ Register addr, Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetFinalAction and_then);
+
+ void CheckPageFlagForMap(
+ Handle<Map> map, int mask, Condition cc, Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ // Check if object is in new space. Jumps if the object is not in new space.
+ // The register scratch can be object itself, but scratch will be clobbered.
+ void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
+ Label::Distance distance = Label::kFar) {
+ InNewSpace(object, scratch, zero, branch, distance);
+ }
+
+ // Check if object is in new space. Jumps if the object is in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
+ Label::Distance distance = Label::kFar) {
+ InNewSpace(object, scratch, not_zero, branch, distance);
+ }
+
+ // Check if an object has a given incremental marking color. Also uses ecx!
+ void HasColor(Register object, Register scratch0, Register scratch1,
+ Label* has_color, Label::Distance has_color_distance,
+ int first_bit, int second_bit);
+
+ void JumpIfBlack(Register object, Register scratch0, Register scratch1,
+ Label* on_black,
+ Label::Distance on_black_distance = Label::kFar);
+
+ // Checks the color of an object. If the object is white we jump to the
+ // incremental marker.
+ void JumpIfWhite(Register value, Register scratch1, Register scratch2,
+ Label* value_is_white, Label::Distance distance);
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object, int offset, Register value, Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // Operand(reg, off).
+ void RecordWriteContextSlot(
+ Register context, int offset, Register value, Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting) {
+ RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
+ remembered_set_action, smi_check,
+ pointers_to_here_check_for_value);
+ }
+
+ // For page containing |object| mark region covering |address|
+ // dirty. |object| is the object being stored into, |value| is the
+ // object being stored. The address and value registers are clobbered by the
+ // operation. RecordWrite filters out smis so it does not update the
+ // write barrier if the value is a smi.
+ void RecordWrite(
+ Register object, Register address, Register value, SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // Notify the garbage collector that we wrote a code entry into a
+ // JSFunction. Only scratch is clobbered by the operation.
+ void RecordWriteCodeEntryField(Register js_function, Register code_entry,
+ Register scratch);
+
+ // For page containing |object| mark the region covering the object's map
+ // dirty. |object| is the object being stored into, |map| is the Map object
+ // that was stored.
+ void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
+ Register scratch2, SaveFPRegsMode save_fp);
+
+ // ---------------------------------------------------------------------------
+ // Debugger Support
+
+ void DebugBreak();
+
+ // Enter specific kind of exit frame. Expects the number of
+ // arguments in register eax and sets up the number of arguments in
+ // register edi and the pointer to the first argument in register
+ // esi.
+ void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
+
+ void EnterApiExitFrame(int argc);
+
+ // Leave the current exit frame. Expects the return value in
+ // register eax:edx (untouched) and the pointer to the first
+ // argument in register esi (if pop_arguments == true).
+ void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
+
+ // Leave the current exit frame. Expects the return value in
+ // register eax (untouched).
+ void LeaveApiExitFrame(bool restore_context);
+
+ // Find the function context up the context chain.
+ void LoadContext(Register dst, int context_chain_length);
+
+ // Load the global proxy from the current context.
+ void LoadGlobalProxy(Register dst);
+
+ // Load the global function with the given index.
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers
+ // function and map can be the same.
+ void LoadGlobalFunctionInitialMap(Register function, Register map);
+
+ // Push and pop the registers that can hold pointers.
+ void PushSafepointRegisters() { pushad(); }
+ void PopSafepointRegisters() { popad(); }
+ // Store the value in register/immediate src in the safepoint
+ // register stack slot for register dst.
+ void StoreToSafepointRegisterSlot(Register dst, Register src);
+ void StoreToSafepointRegisterSlot(Register dst, Immediate src);
+ void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+ void CmpHeapObject(Register reg, Handle<HeapObject> object);
+ void PushObject(Handle<Object> object);
+
+ void CmpObject(Register reg, Handle<Object> object) {
+ AllowDeferredHandleDereference heap_object_check;
+ if (object->IsHeapObject()) {
+ CmpHeapObject(reg, Handle<HeapObject>::cast(object));
+ } else {
+ cmp(reg, Immediate(Smi::cast(*object)));
+ }
+ }
+
+ void GetWeakValue(Register value, Handle<WeakCell> cell);
+ void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
+
+ // ---------------------------------------------------------------------------
+ // JavaScript invokes
+
+ // Invoke the JavaScript function code by either calling or jumping.
+
+ void InvokeFunctionCode(Register function, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // On function call, call into the debugger if necessary.
+ void CheckDebugHook(Register fun, Register new_target,
+ const ParameterCount& expected,
+ const ParameterCount& actual);
+
+ // Invoke the JavaScript function in the given register. Changes the
+ // current context to the context in the function before invoking.
+ void InvokeFunction(Register function, Register new_target,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Register function, const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Support for constant splitting.
+ bool IsUnsafeImmediate(const Immediate& x);
+ void SafeMove(Register dst, const Immediate& x);
+ void SafePush(const Immediate& x);
+
+ // Compare object type for heap object.
+ // Incoming register is heap_object and outgoing register is map.
+ void CmpObjectType(Register heap_object, InstanceType type, Register map);
+
+ // Compare instance type for map.
+ void CmpInstanceType(Register map, InstanceType type);
+
+ // Compare an object's map with the specified map.
+ void CompareMap(Register obj, Handle<Map> map);
+
+ // Check if the map of an object is equal to a specified map and branch to
+ // label if not. Skip the smi check if not required (object is known to be a
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+ // against maps that are ElementsKind transition maps of the specified map.
+ void CheckMap(Register obj, Handle<Map> map, Label* fail,
+ SmiCheckType smi_check_type);
+
+ // Check if the object in register heap_object is a string. Afterwards the
+ // register map contains the object map and the register instance_type
+ // contains the instance_type. The registers map and instance_type can be the
+ // same in which case it contains the instance type afterwards. Either of the
+ // registers map and instance_type can be the same as heap_object.
+ Condition IsObjectStringType(Register heap_object, Register map,
+ Register instance_type);
+
+ // FCmp is similar to integer cmp, but requires unsigned
+ // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
+ void FCmp();
+ void FXamMinusZero();
+ void FXamSign();
+ void X87CheckIA();
+ void X87SetRC(int rc);
+ void X87SetFPUCW(int cw);
+
+ void ClampUint8(Register reg);
+ void ClampTOSToUint8(Register result_reg);
+
+ void SlowTruncateToI(Register result_reg, Register input_reg,
+ int offset = HeapNumber::kValueOffset - kHeapObjectTag);
+
+ void TruncateHeapNumberToI(Register result_reg, Register input_reg);
+ void TruncateX87TOSToI(Register result_reg);
+
+ void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
+ Label* lost_precision, Label* is_nan, Label* minus_zero,
+ Label::Distance dst = Label::kFar);
+
+ // Smi tagging support.
+ void SmiTag(Register reg) {
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ add(reg, reg);
+ }
+
+ // Modifies the register even if it does not contain a Smi!
+ void UntagSmi(Register reg, Label* is_smi) {
+ STATIC_ASSERT(kSmiTagSize == 1);
+ sar(reg, kSmiTagSize);
+ STATIC_ASSERT(kSmiTag == 0);
+ j(not_carry, is_smi);
+ }
+
+ // Jump if register contain a non-smi.
+ inline void JumpIfNotSmi(Register value, Label* not_smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(not_zero, not_smi_label, distance);
+ }
+ // Jump if the operand is not a smi.
+ inline void JumpIfNotSmi(Operand value, Label* smi_label,
+ Label::Distance distance = Label::kFar) {
+ test(value, Immediate(kSmiTagMask));
+ j(not_zero, smi_label, distance);
+ }
+ // Jump if the value cannot be represented by a smi.
+ inline void JumpIfNotValidSmiValue(Register value, Register scratch,
+ Label* on_invalid,
+ Label::Distance distance = Label::kFar) {
+ mov(scratch, value);
+ add(scratch, Immediate(0x40000000U));
+ j(sign, on_invalid, distance);
+ }
+
+ // Jump if the unsigned integer value cannot be represented by a smi.
+ inline void JumpIfUIntNotValidSmiValue(
+ Register value, Label* on_invalid,
+ Label::Distance distance = Label::kFar) {
+ cmp(value, Immediate(0x40000000U));
+ j(above_equal, on_invalid, distance);
+ }
+
+ void LoadInstanceDescriptors(Register map, Register descriptors);
+ void EnumLength(Register dst, Register map);
+ void NumberOfOwnDescriptors(Register dst, Register map);
+ void LoadAccessor(Register dst, Register holder, int accessor_index,
+ AccessorComponent accessor);
+
+ template<typename Field>
+ void DecodeField(Register reg) {
+ static const int shift = Field::kShift;
+ static const int mask = Field::kMask >> Field::kShift;
+ if (shift != 0) {
+ sar(reg, shift);
+ }
+ and_(reg, Immediate(mask));
+ }
+
+ template<typename Field>
+ void DecodeFieldToSmi(Register reg) {
+ static const int shift = Field::kShift;
+ static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
+ STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ if (shift < kSmiTagSize) {
+ shl(reg, kSmiTagSize - shift);
+ } else if (shift > kSmiTagSize) {
+ sar(reg, shift - kSmiTagSize);
+ }
+ and_(reg, Immediate(mask));
+ }
+
+ // Abort execution if argument is not a smi, enabled via --debug-code.
+ void AssertSmi(Register object);
+
+ // Abort execution if argument is a smi, enabled via --debug-code.
+ void AssertNotSmi(Register object);
+
+ // Abort execution if argument is not a JSFunction, enabled via --debug-code.
+ void AssertFunction(Register object);
+
+ // Abort execution if argument is not a JSBoundFunction,
+ // enabled via --debug-code.
+ void AssertBoundFunction(Register object);
+
+ // Abort execution if argument is not a JSGeneratorObject (or subclass),
+ // enabled via --debug-code.
+ void AssertGeneratorObject(Register object);
+
+ // Abort execution if argument is not undefined or an AllocationSite, enabled
+ // via --debug-code.
+ void AssertUndefinedOrAllocationSite(Register object);
+
+ // ---------------------------------------------------------------------------
+ // Exception handling
+
+ // Push a new stack handler and link it into stack handler chain.
+ void PushStackHandler();
+
+ // Unlink the stack handler on top of the stack from the stack handler chain.
+ void PopStackHandler();
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support
+
+ void GetNumberHash(Register r0, Register scratch);
+
+ // ---------------------------------------------------------------------------
+ // Allocation support
+
+ // Allocate an object in new space or old space. If the given space
+ // is exhausted control continues at the gc_required label. The allocated
+ // object is returned in result and end of the new object is returned in
+ // result_end. The register scratch can be passed as no_reg in which case
+ // an additional object reference will be added to the reloc info. The
+ // returned pointers in result and result_end have not yet been tagged as
+ // heap objects. If result_contains_top_on_entry is true the content of
+ // result is known to be the allocation top on entry (could be result_end
+ // from a previous call). If result_contains_top_on_entry is true scratch
+ // should be no_reg as it is never used.
+ void Allocate(int object_size, Register result, Register result_end,
+ Register scratch, Label* gc_required, AllocationFlags flags);
+
+ void Allocate(int header_size, ScaleFactor element_size,
+ Register element_count, RegisterValueType element_count_type,
+ Register result, Register result_end, Register scratch,
+ Label* gc_required, AllocationFlags flags);
+
+ void Allocate(Register object_size, Register result, Register result_end,
+ Register scratch, Label* gc_required, AllocationFlags flags);
+
+ // Allocate a heap number in new space with undefined value. The
+ // register scratch2 can be passed as no_reg; the others must be
+ // valid registers. Returns tagged pointer in result register, or
+ // jumps to gc_required if new space is full.
+ void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
+ Label* gc_required, MutableMode mode = IMMUTABLE);
+
+ // Allocate and initialize a JSValue wrapper with the specified {constructor}
+ // and {value}.
+ void AllocateJSValue(Register result, Register constructor, Register value,
+ Register scratch, Label* gc_required);
+
+ // Initialize fields with filler values. Fields starting at |current_address|
+ // not including |end_address| are overwritten with the value in |filler|. At
+ // the end the loop, |current_address| takes the value of |end_address|.
+ void InitializeFieldsWithFiller(Register current_address,
+ Register end_address, Register filler);
+
+ // ---------------------------------------------------------------------------
+ // Support functions.
+
+ // Check a boolean-bit of a Smi field.
+ void BooleanBitTest(Register object, int field_offset, int bit_index);
+
+ // Machine code version of Map::GetConstructor().
+ // |temp| holds |result|'s map when done.
+ void GetMapConstructor(Register result, Register map, Register temp);
+
+ // ---------------------------------------------------------------------------
+ // Runtime calls
+
+ // Call a code stub. Generate the code if necessary.
+ void CallStub(CodeStub* stub);
+
+ // Tail call a code stub (jump). Generate the code if necessary.
+ void TailCallStub(CodeStub* stub);
+
+ // Call a runtime routine.
+ void CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+ void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
+ const Runtime::Function* function = Runtime::FunctionForId(fid);
+ CallRuntime(function, function->nargs, kSaveFPRegs);
+ }
+
+ // Convenience function: Same as above, but takes the fid instead.
+ void CallRuntime(Runtime::FunctionId fid,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+ const Runtime::Function* function = Runtime::FunctionForId(fid);
+ CallRuntime(function, function->nargs, save_doubles);
+ }
+
+ // Convenience function: Same as above, but takes the fid instead.
+ void CallRuntime(Runtime::FunctionId fid, int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+ CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
+ }
+
+ // Convenience function: call an external reference.
+ void CallExternalReference(ExternalReference ref, int num_arguments);
+
+ // Convenience function: tail call a runtime routine (jump).
+ void TailCallRuntime(Runtime::FunctionId fid);
+
+ // Jump to a runtime routine.
+ void JumpToExternalReference(const ExternalReference& ext,
+ bool builtin_exit_frame = false);
+
+ // ---------------------------------------------------------------------------
+ // Utilities
+
+ // Emit code that loads |parameter_index|'th parameter from the stack to
+ // the register according to the CallInterfaceDescriptor definition.
+ // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
+ // below the caller's sp (on x87 it's at least return address).
+ template <class Descriptor>
+ void LoadParameterFromStack(
+ Register reg, typename Descriptor::ParameterIndices parameter_index,
+ int sp_to_ra_offset_in_words = 1) {
+ DCHECK(Descriptor::kPassLastArgsOnStack);
+ DCHECK_LT(parameter_index, Descriptor::kParameterCount);
+ DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount,
+ parameter_index);
+ int offset = (Descriptor::kParameterCount - parameter_index - 1 +
+ sp_to_ra_offset_in_words) *
+ kPointerSize;
+ mov(reg, Operand(esp, offset));
+ }
+
+ // Emit code to discard a non-negative number of pointer-sized elements
+ // from the stack, clobbering only the esp register.
+ void Drop(int element_count);
+
+ void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
+ void Pop(Register dst) { pop(dst); }
+ void Pop(const Operand& dst) { pop(dst); }
+ void PushReturnAddressFrom(Register src) { push(src); }
+ void PopReturnAddressTo(Register dst) { pop(dst); }
+
+ // Emit code for a truncating division by a constant. The dividend register is
+ // unchanged, the result is in edx, and eax gets clobbered.
+ void TruncatingDiv(Register dividend, int32_t divisor);
+
+ // ---------------------------------------------------------------------------
+ // StatsCounter support
+
+ void SetCounter(StatsCounter* counter, int value);
+ void IncrementCounter(StatsCounter* counter, int value);
+ void DecrementCounter(StatsCounter* counter, int value);
+ void IncrementCounter(Condition cc, StatsCounter* counter, int value);
+ void DecrementCounter(Condition cc, StatsCounter* counter, int value);
+
+ // ---------------------------------------------------------------------------
+ // String utilities.
+
+ // Checks if both objects are sequential one-byte strings, and jumps to label
+ // if either is not.
+ void JumpIfNotBothSequentialOneByteStrings(
+ Register object1, Register object2, Register scratch1, Register scratch2,
+ Label* on_not_flat_one_byte_strings);
+
+ // Checks if the given register or operand is a unique name
+ void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
+ Label::Distance distance = Label::kFar) {
+ JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
+ }
+
+ void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
+ Label::Distance distance = Label::kFar);
+
+ void EmitSeqStringSetCharCheck(Register string, Register index,
+ Register value, uint32_t encoding_mask);
+
+ static int SafepointRegisterStackIndex(Register reg) {
+ return SafepointRegisterStackIndex(reg.code());
+ }
+
+ // Load the type feedback vector from a JavaScript frame.
+ void EmitLoadFeedbackVector(Register vector);
+
+ void EnterBuiltinFrame(Register context, Register target, Register argc);
+ void LeaveBuiltinFrame(Register context, Register target, Register argc);
+
+ // Expects object in eax and returns map with validated enum cache
+ // in eax. Assumes that any other register can be used as a scratch.
+ void CheckEnumCache(Label* call_runtime);
+
+ // AllocationMemento support. Arrays may have an associated
+ // AllocationMemento object that can be checked for in order to pretransition
+ // to another type.
+ // On entry, receiver_reg should point to the array object.
+ // scratch_reg gets clobbered.
+ // If allocation info is present, conditional code is set to equal.
+ void TestJSArrayForAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found);
+
+ private:
+ int jit_cookie_;
+
+ // Helper functions for generating invokes.
+ void InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual, Label* done,
+ bool* definitely_mismatches, InvokeFlag flag,
+ Label::Distance done_distance,
+ const CallWrapper& call_wrapper);
+
+ void EnterExitFramePrologue(StackFrame::Type frame_type);
+ void EnterExitFrameEpilogue(int argc, bool save_doubles);
+
+ void LeaveExitFrameEpilogue(bool restore_context);
+
+ // Allocation support helpers.
+ void LoadAllocationTopHelper(Register result, Register scratch,
+ AllocationFlags flags);
+
+ void UpdateAllocationTopHelper(Register result_end, Register scratch,
+ AllocationFlags flags);
+
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object, Register scratch, Condition cc,
+ Label* condition_met,
+ Label::Distance condition_met_distance = Label::kFar);
+
+ // Helper for finding the mark bits for an address. Afterwards, the
+ // bitmap register points at the word with the mark bits and the mask
+ // the position of the first bit. Uses ecx as scratch and leaves addr_reg
+ // unchanged.
+ inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
+ Register mask_reg);
+
+ // Compute memory operands for safepoint stack slots.
+ Operand SafepointRegisterSlot(Register reg);
+ static int SafepointRegisterStackIndex(int reg_code);
+
+ // Needs access to SafepointRegisterStackIndex for compiled frame
+ // traversal.
+ friend class StandardFrame;
+};
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. Is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion.
+class CodePatcher {
+ public:
+ CodePatcher(Isolate* isolate, byte* address, int size);
+ ~CodePatcher();
+
+ // Macro assembler to emit code.
+ MacroAssembler* masm() { return &masm_; }
+
+ private:
+ byte* address_; // The address of the code being patched.
+ int size_; // Number of bytes of the expected patch size.
+ MacroAssembler masm_; // Macro assembler used to generate the code.
+};
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+// Generate an Operand for loading a field from an object.
+inline Operand FieldOperand(Register object, int offset) {
+ return Operand(object, offset - kHeapObjectTag);
+}
+
+// Generate an Operand for loading an indexed field from an object.
+inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
+ int offset) {
+ return Operand(object, index, scale, offset - kHeapObjectTag);
+}
+
+inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
+ int additional_offset = 0) {
+ int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
+ return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
+}
+
+inline Operand ContextOperand(Register context, int index) {
+ return Operand(context, Context::SlotOffset(index));
+}
+
+inline Operand ContextOperand(Register context, Register index) {
+ return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
+}
+
+inline Operand NativeContextOperand() {
+ return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
+}
+
+#define ACCESS_MASM(masm) masm->
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_MACRO_ASSEMBLER_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/OWNERS qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/OWNERS
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/OWNERS 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/OWNERS 2017-12-25 17:42:57.218465603 +0100
@@ -0,0 +1,2 @@
+weiliang.lin@intel.com
+chunyang.dai@intel.com
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/simulator-x87.cc qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/simulator-x87.cc
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/simulator-x87.cc 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/simulator-x87.cc 2017-12-25 17:42:57.224465515 +0100
@@ -0,0 +1,7 @@
+// Copyright 2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/x87/simulator-x87.h"
+
+// Since there is no simulator for the ia32 architecture this file is empty.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/simulator-x87.h qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/simulator-x87.h
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/src/x87/simulator-x87.h 1970-01-01 01:00:00.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/src/x87/simulator-x87.h 2017-12-25 17:42:57.224465515 +0100
@@ -0,0 +1,52 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_X87_SIMULATOR_X87_H_
+#define V8_X87_SIMULATOR_X87_H_
+
+#include "src/allocation.h"
+
+namespace v8 {
+namespace internal {
+
+// Since there is no simulator for the ia32 architecture the only thing we can
+// do is to call the entry directly.
+#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
+ (entry(p0, p1, p2, p3, p4))
+
+
+typedef int (*regexp_matcher)(String*, int, const byte*,
+ const byte*, int*, int, Address, int, Isolate*);
+
+// Call the generated regexp code directly. The code at the entry address should
+// expect eight int/pointer sized arguments and return an int.
+#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
+ p7, p8) \
+ (FUNCTION_CAST<regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, p8))
+
+
+// The stack limit beyond which we will throw stack overflow errors in
+// generated code. Because generated code on ia32 uses the C stack, we
+// just use the C stack limit.
+class SimulatorStack : public v8::internal::AllStatic {
+ public:
+ static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
+ uintptr_t c_limit) {
+ USE(isolate);
+ return c_limit;
+ }
+
+ static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
+ uintptr_t try_catch_address) {
+ USE(isolate);
+ return try_catch_address;
+ }
+
+ static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); }
+};
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_X87_SIMULATOR_X87_H_
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/test/cctest/BUILD.gn qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/test/cctest/BUILD.gn
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/test/cctest/BUILD.gn 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/test/cctest/BUILD.gn 2017-12-25 17:42:57.224465515 +0100
@@ -287,6 +287,17 @@
"test-macro-assembler-x64.cc",
"test-run-wasm-relocation-x64.cc",
]
+ } else if (v8_current_cpu == "x87") {
+ sources += [ ### gcmole(arch:x87) ###
+ "test-assembler-x87.cc",
+ "test-code-stubs-x87.cc",
+ "test-code-stubs.cc",
+ "test-code-stubs.h",
+ "test-disasm-x87.cc",
+ "test-log-stack-tracer.cc",
+ "test-macro-assembler-x87.cc",
+ "test-run-wasm-relocation-x87.cc",
+ ]
} else if (v8_current_cpu == "ppc" || v8_current_cpu == "ppc64") {
sources += [ ### gcmole(arch:ppc) ###
"test-assembler-ppc.cc",
@@ -332,7 +343,7 @@
defines = []
- if (is_component_build) {
+ if (is_component_build || v8_build_shared) {
# cctest can't be built against a shared library, so we
# need to depend on the underlying static target in that case.
deps += [ "../..:v8_maybe_snapshot" ]
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/test/cctest/cctest.gyp qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/test/cctest/cctest.gyp
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/test/cctest/cctest.gyp 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/test/cctest/cctest.gyp 2017-12-25 17:43:10.318273560 +0100
@@ -308,6 +308,16 @@
'test-disasm-mips64.cc',
'test-macro-assembler-mips64.cc',
],
+ 'cctest_sources_x87': [ ### gcmole(arch:x87) ###
+ 'test-assembler-x87.cc',
+ 'test-code-stubs.cc',
+ 'test-code-stubs.h',
+ 'test-code-stubs-x87.cc',
+ 'test-disasm-x87.cc',
+ 'test-macro-assembler-x87.cc',
+ 'test-log-stack-tracer.cc',
+ 'test-run-wasm-relocation-x87.cc',
+ ],
},
'includes': ['../../gypfiles/toolchain.gypi', '../../gypfiles/features.gypi'],
'targets': [
@@ -392,6 +402,11 @@
'<@(cctest_sources_mips64el)',
],
}],
+ ['v8_target_arch=="x87"', {
+ 'sources': [
+ '<@(cctest_sources_x87)',
+ ],
+ }],
[ 'OS=="linux" or OS=="qnx"', {
'sources': [
'test-platform-linux.cc',
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/dev/gen-tags.py qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/dev/gen-tags.py
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/dev/gen-tags.py 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/dev/gen-tags.py 2017-12-25 17:43:15.534197094 +0100
@@ -20,7 +20,7 @@
import sys
# All arches that this script understands.
-ARCHES = ["ia32", "x64", "arm", "arm64", "mips", "mips64", "ppc", "s390"]
+ARCHES = ["ia32", "x64", "arm", "arm64", "mips", "mips64", "ppc", "s390", "x87"]
def PrintHelpAndExit():
print(__doc__)
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/dev/gm.py qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/dev/gm.py
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/dev/gm.py 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/dev/gm.py 2017-12-25 17:43:15.534197094 +0100
@@ -33,7 +33,7 @@
# All arches that this script understands.
ARCHES = ["ia32", "x64", "arm", "arm64", "mipsel", "mips64el", "ppc", "ppc64",
- "s390", "s390x"]
+ "s390", "s390x", "x87"]
# Arches that get built/run when you don't specify any.
DEFAULT_ARCHES = ["ia32", "x64", "arm", "arm64"]
# Modes that this script understands.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/run-tests.py qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/run-tests.py
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/run-tests.py 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/run-tests.py 2017-12-25 17:43:15.534197094 +0100
@@ -187,6 +187,7 @@
"android_x64",
"arm",
"ia32",
+ "x87",
"mips",
"mipsel",
"mips64",
@@ -210,6 +211,7 @@
"mips64el",
"s390",
"s390x",
+ "x87",
"arm64"]
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/testrunner/local/statusfile.py qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/testrunner/local/statusfile.py
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/testrunner/local/statusfile.py 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/testrunner/local/statusfile.py 2017-12-25 17:43:15.534197094 +0100
@@ -59,10 +59,10 @@
# Support arches, modes to be written as keywords instead of strings.
VARIABLES = {ALWAYS: True}
for var in ["debug", "release", "big", "little",
- "android_arm", "android_arm64", "android_ia32", "android_x64",
- "arm", "arm64", "ia32", "mips", "mipsel", "mips64", "mips64el",
- "x64", "ppc", "ppc64", "s390", "s390x", "macos", "windows",
- "linux", "aix"]:
+ "android_arm", "android_arm64", "android_ia32", "android_x87",
+ "android_x64", "arm", "arm64", "ia32", "mips", "mipsel", "mips64",
+ "mips64el", "x64", "x87", "ppc", "ppc64", "s390", "s390x", "macos",
+ "windows", "linux", "aix"]:
VARIABLES[var] = var
# Allow using variants as keywords.
diff -Nur qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/verify_source_deps.py qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/verify_source_deps.py
--- qtwebengine-everywhere-src-5.10.0/src/3rdparty/chromium/v8/tools/verify_source_deps.py 2017-11-28 14:06:53.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/3rdparty/chromium/v8/tools/verify_source_deps.py 2017-12-25 17:43:15.535197080 +0100
@@ -82,6 +82,7 @@
'solaris',
'vtune',
'v8-version.h',
+ 'x87',
]
ALL_GN_PREFIXES = [
diff -Nur qtwebengine-everywhere-src-5.10.0/src/core/core_module.pro qtwebengine-everywhere-src-5.10.0-no-sse2/src/core/core_module.pro
--- qtwebengine-everywhere-src-5.10.0/src/core/core_module.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/core/core_module.pro 2017-12-25 13:05:24.093938639 +0100
@@ -44,6 +44,31 @@
else: QMAKE_LFLAGS += $$NINJA_LFLAGS
POST_TARGETDEPS += $$NINJA_TARGETDEPS
+# go through the shared libraries that GN wants to link to
+# ignore the dummy convert_dict shared library used only to get a .pri file
+# add the ones NOT in lib/sse2 to LIBS_PRIVATE
+# don't add those in lib/sse2 that are only replacements for the normal ones
+# collect all shared libraries, non-SSE2 and SSE2, so they can be installed
+for(shlib, NINJA_SOLIBS) {
+ !contains(shlib, .*convert_dict.*) {
+ contains(shlib, .*/lib/sse2/.*) {
+ shlibs_sse2 += $$shlib
+ } else {
+ LIBS_PRIVATE += $$shlib
+ shlibs += $$shlib
+ }
+ }
+}
+
+# set the shared libraries to be installed
+# add an rpath to their installation location
+shlib_install_path = $$[QT_INSTALL_LIBS]/qtwebengine
+!isEmpty(shlibs) {
+ shlibs.files += $$shlibs
+ shlibs_sse2.files += $$shlibs_sse2
+ LIBS_PRIVATE += -Wl,--rpath,$$shlib_install_path
+}
+
LIBS_PRIVATE += -L$$api_library_path
CONFIG *= no_smart_library_merge
@@ -113,7 +138,12 @@
locales.path = $$[QT_INSTALL_TRANSLATIONS]/qtwebengine_locales
resources.CONFIG += no_check_exist
resources.path = $$[QT_INSTALL_DATA]/resources
- INSTALLS += locales resources
+ # install the shared libraries
+ shlibs.CONFIG += no_check_exist
+ shlibs.path = $$shlib_install_path
+ shlibs_sse2.CONFIG += no_check_exist
+ shlibs_sse2.path = $$shlib_install_path/sse2
+ INSTALLS += locales resources shlibs shlibs_sse2
!qtConfig(webengine-system-icu) {
icu.CONFIG += no_check_exist
diff -Nur qtwebengine-everywhere-src-5.10.0/src/process/process.pro qtwebengine-everywhere-src-5.10.0-no-sse2/src/process/process.pro
--- qtwebengine-everywhere-src-5.10.0/src/process/process.pro 2017-11-29 09:42:29.000000000 +0100
+++ qtwebengine-everywhere-src-5.10.0-no-sse2/src/process/process.pro 2017-12-25 13:05:24.093938639 +0100
@@ -9,6 +9,8 @@
SOURCES = main.cpp
+QMAKE_LFLAGS += -Wl,-rpath-link,$$OUT_PWD/../core/Release
+
win32 {
SOURCES += \
support_win.cpp