67 lines
2.2 KiB
67 lines
2.2 KiB
3 years ago
|
From 3118eb64934499d93db3230748a452351d1d9a65 Mon Sep 17 00:00:00 2001
|
||
|
From: Tomas Mraz <tomas@openssl.org>
|
||
|
Date: Mon, 28 Feb 2022 18:26:21 +0100
|
||
|
Subject: [PATCH] Fix possible infinite loop in BN_mod_sqrt()
|
||
|
|
||
|
The calculation in some cases does not finish for non-prime p.
|
||
|
|
||
|
This fixes CVE-2022-0778.
|
||
|
|
||
|
Based on patch by David Benjamin <davidben@google.com>.
|
||
|
|
||
|
Reviewed-by: Paul Dale <pauli@openssl.org>
|
||
|
Reviewed-by: Matt Caswell <matt@openssl.org>
|
||
|
---
|
||
|
crypto/bn/bn_sqrt.c | 30 ++++++++++++++++++------------
|
||
|
1 file changed, 18 insertions(+), 12 deletions(-)
|
||
|
|
||
|
diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c
|
||
|
index 1723d5ded5a8..53b0f559855c 100644
|
||
|
--- a/crypto/bn/bn_sqrt.c
|
||
|
+++ b/crypto/bn/bn_sqrt.c
|
||
|
@@ -14,7 +14,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
||
|
/*
|
||
|
* Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
|
||
|
* algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
|
||
|
- * Theory", algorithm 1.5.1). 'p' must be prime!
|
||
|
+ * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or
|
||
|
+ * an incorrect "result" will be returned.
|
||
|
*/
|
||
|
{
|
||
|
BIGNUM *ret = in;
|
||
|
@@ -301,18 +302,23 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
||
|
goto vrfy;
|
||
|
}
|
||
|
|
||
|
- /* find smallest i such that b^(2^i) = 1 */
|
||
|
- i = 1;
|
||
|
- if (!BN_mod_sqr(t, b, p, ctx))
|
||
|
- goto end;
|
||
|
- while (!BN_is_one(t)) {
|
||
|
- i++;
|
||
|
- if (i == e) {
|
||
|
- BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
||
|
- goto end;
|
||
|
+ /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */
|
||
|
+ for (i = 1; i < e; i++) {
|
||
|
+ if (i == 1) {
|
||
|
+ if (!BN_mod_sqr(t, b, p, ctx))
|
||
|
+ goto end;
|
||
|
+
|
||
|
+ } else {
|
||
|
+ if (!BN_mod_mul(t, t, t, p, ctx))
|
||
|
+ goto end;
|
||
|
}
|
||
|
- if (!BN_mod_mul(t, t, t, p, ctx))
|
||
|
- goto end;
|
||
|
+ if (BN_is_one(t))
|
||
|
+ break;
|
||
|
+ }
|
||
|
+ /* If not found, a is not a square or p is not prime. */
|
||
|
+ if (i >= e) {
|
||
|
+ BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
||
|
+ goto end;
|
||
|
}
|
||
|
|
||
|
/* t := y^2^(e - i - 1) */
|